Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Enhancing the Interpretability of SHAP Values Using Large Language Models (2409.00079v1)

Published 24 Aug 2024 in cs.HC

Abstract: Model interpretability is crucial for understanding and trusting the decisions made by complex machine learning models, such as those built with XGBoost. SHAP (SHapley Additive exPlanations) values have become a popular tool for interpreting these models by attributing the output to individual features. However, the technical nature of SHAP explanations often limits their utility to researchers, leaving non-technical end-users struggling to understand the model's behavior. To address this challenge, we explore the use of LLMs to translate SHAP value outputs into plain language explanations that are more accessible to non-technical audiences. By applying a pre-trained LLM, we generate explanations that maintain the accuracy of SHAP values while significantly improving their clarity and usability for end users. Our results demonstrate that LLM-enhanced SHAP explanations provide a more intuitive understanding of model predictions, thereby enhancing the overall interpretability of machine learning models. Future work will explore further customization, multimodal explanations, and user feedback mechanisms to refine and expand the approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)