Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element discretization of the steady, generalized Navier-Stokes equations for small shear stress exponents (2408.15731v1)

Published 28 Aug 2024 in math.NA and cs.NA

Abstract: A finite element (FE) discretization for the steady, incompressible, fully inhomogeneous, generalized Navier-Stokes equations is proposed. By the method of divergence reconstruction operators, the formulation is valid for all shear stress exponents $p > \tfrac{2d}{d+2}$. The Dirichlet boundary condition is imposed strongly, using any discretization of the boundary data which converges at a sufficient rate. $\textit{A priori}$ error estimates for velocity vector field and kinematic pressure are derived and numerical experiments are conducted. These confirm the quasi-optimality of the $\textit{a priori}$ error estimate for the velocity vector field. The $\textit{a priori}$ error estimates for the kinematic pressure are quasi-optimal if $p \leq 2$.

Summary

We haven't generated a summary for this paper yet.