Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipation-driven quantum generative adversarial networks (2408.15597v1)

Published 28 Aug 2024 in quant-ph

Abstract: Quantum machine learning holds the promise of harnessing quantum advantage to achieve speedup beyond classical algorithms. Concurrently, research indicates that dissipation can serve as an effective resource in quantum computation. In this paper, we introduce a novel dissipation-driven quantum generative adversarial network (DQGAN) architecture specifically tailored for generating classical data. Our DQGAN comprises two interacting networks: a generative network and a discriminative network, both constructed from qubits. The classical data is encoded into the input qubits of the input layer via strong tailored dissipation processes. This encoding scheme enables us to extract both the generated data and the classification results by measuring the observables of the steady state of the output qubits. The network coupling weight, i.e., the strength of the interaction Hamiltonian between layers, is iteratively updated during the training process. This training procedure closely resembles the training of conventional generative adversarial networks (GANs). By alternately updating the two networks, we foster adversarial learning until the equilibrium point is reached. Our preliminary numerical test on a simplified instance of the task substantiate the feasibility of our DQGAN model.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com