Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

A physics-encoded Fourier neural operator approach for surrogate modeling of divergence-free stress fields in solids (2408.15408v2)

Published 27 Aug 2024 in cs.CE, cond-mat.mtrl-sci, cs.LG, and math.AP

Abstract: The purpose of the current work is the development of a so-called physics-encoded Fourier neural operator (PeFNO) for surrogate modeling of the quasi-static equilibrium stress field in solids. Rather than accounting for constraints from physics in the loss function as done in the (now standard) physics-informed approach, the physics-encoded approach incorporates or "encodes" such constraints directly into the network or operator architecture. As a result, in contrast to the physics-informed approach in which only training is physically constrained, both training and output are physically constrained in the physics-encoded approach. For the current constraint of divergence-free stress, a novel encoding approach based on a stress potential is proposed. As a "proof-of-concept" example application of the proposed PeFNO, a heterogeneous polycrystalline material consisting of isotropic elastic grains subject to uniaxial extension is considered. Stress field data for training are obtained from the numerical solution of a corresponding boundary-value problem for quasi-static mechanical equilibrium. This data is also employed to train an analogous physics-guided FNO (PgFNO) and physics-informed FNO (PiFNO) for comparison. As confirmed by this comparison and as expected on the basis of their differences, the output of the trained PeFNO is significantly more accurate in satisfying mechanical equilibrium than the output of either the trained PgFNO or the trained PiFNO.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube