Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows (2408.14685v2)

Published 26 Aug 2024 in physics.flu-dyn and cs.LG

Abstract: The intrinsic high dimension of fluid dynamics is an inherent challenge to control of aerodynamic flows, and this is further complicated by a flow's nonlinear response to strong disturbances. Deep reinforcement learning, which takes advantage of the exploratory aspects of reinforcement learning (RL) and the rich nonlinearity of a deep neural network, provides a promising approach to discover feasible control strategies. However, the typical model-free approach to reinforcement learning requires a significant amount of interaction between the flow environment and the RL agent during training, and this high training cost impedes its development and application. In this work, we propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment. The model consists of a physics-augmented autoencoder, which compresses high-dimensional CFD flow field snaphsots into a three-dimensional latent space, and a latent dynamics model that is trained to accurately predict the long-time dynamics of trajectories in the latent space in response to action sequences. The accuracy and robustness of the model are demonstrated in the scenario of a pitching airfoil within a highly disturbed environment. Additionally, an application to a vertical-axis wind turbine in a disturbance-free environment is discussed in the Appendix Based on the model trained in the pitching airfoil problem, we realize an MBRL strategy to mitigate lift variation during gust-airfoil encounters. We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment.

Summary

We haven't generated a summary for this paper yet.