Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Bidirectional Awareness Induction in Autoregressive Seq2Seq Models (2408.13959v1)

Published 25 Aug 2024 in cs.CL

Abstract: Autoregressive Sequence-To-Sequence models are the foundation of many Deep Learning achievements in major research fields such as Vision and Natural Language Processing. Despite that, they still present significant limitations. For instance, when errors occur in the early steps of the prediction, the whole output is severely affected. Such reliance on previously predicted tokens and the inherent computational unfriendliness of sequential algorithms, motivated researchers to explore different architectures and methods in the search for bidirectional approaches. In this work, we introduce the Bidirectional Awareness Induction (BAI), a training method that leverages a subset of elements in the network, the Pivots, to perform bidirectional learning without breaking the autoregressive constraints. To showcase its flexibility, we apply the method to three architectures, the Transformer, ExpansionNet v2 and GPT, then perform experiments over three tasks. Experimental results showcase BAI's effectiveness on all selected tasks and architectures. In particular, we observed an increase of up to 2.4 CIDEr in Image-Captioning, 4.96 BLEU in Neural Machine Translation, and 1.16 ROUGE in Text Summarization compared to the respective baselines. Notably, BAI not only has a positive impact on models trained from scratch but on pre-trained models as well. Such an aspect, combined with the absence of architectural requirements synergizes well with the current trend of LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.