Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning (2408.13378v3)

Published 23 Aug 2024 in cs.AI, cs.CL, cs.IR, cs.LG, and q-bio.QM

Abstract: Drug repurposing offers a promising avenue for accelerating drug development by identifying new therapeutic potentials of existing drugs. In this paper, we propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration. Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics Database (CTD), and Search Tool for Interactions of Chemicals (STITCH) to systematically extract DTIs; and a Search Agent interacts with biomedical literature to annotate and verify computational predictions. By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates. Preliminary results demonstrate the potential of our approach in not only predicting drug-disease interactions but also in reducing the time and cost associated with traditional drug discovery methods. This paper highlights the scalability of multi-agent systems in biomedical research and their role in driving innovation in drug repurposing. Our approach not only outperforms existing methods in predicting drug repurposing potential but also provides interpretable results, paving the way for more efficient and cost-effective drug discovery processes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yoshitaka Inoue (7 papers)
  2. Tianci Song (1 paper)
  3. Tianfan Fu (53 papers)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com