Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commutator-free Cayley methods (2408.13043v2)

Published 23 Aug 2024 in math.NA and cs.NA

Abstract: Differential equations posed on quadratic matrix Lie groups arise in the context of classical mechanics and quantum dynamical systems. Lie group numerical integrators preserve the constants of motions defining the Lie group. Thus, they respect important physical laws of the dynamical system, such as unitarity and energy conservation in the context of quantum dynamical systems, for instance. In this article we develop a high-order commutator free Lie group integrator for non-autonomous differential equations evolving on quadratic Lie groups. Instead of matrix exponentials, which are expensive to evaluate and need to be approximated by appropriate rational functions in order to preserve the Lie group structure, the proposed method is obtained as a composition of Cayley transforms which naturally respect the structure of quadratic Lie groups while being computationally efficient to evaluate. Unlike Cayley-Magnus methods the method is also free from nested matrix commutators.

Summary

We haven't generated a summary for this paper yet.