Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Spectral Function Space Learning and Numerical Linear Algebra Networks for Solving Linear Inverse Problems (2408.10690v1)

Published 20 Aug 2024 in math.NA, cs.NA, and math.FA

Abstract: We consider solving a probably ill-conditioned linear operator equation, where the operator is not modeled by physical laws but is specified via training pairs (consisting of images and data) of the input-output relation of the operator. We derive a stable method for computing the operator, which consists of first a Gram-Schmidt orthonormalization of images and a principal component analysis of the data. This two-step algorithm provides a spectral decomposition of the linear operator. Moreover, we show that both Gram-Schmidt and principal component analysis can be written as a deep neural network, which relates this procedure to de-and encoder networks. Therefore, we call the two-step algorithm a linear algebra network. Finally, we provide numerical simulations showing the strategy is feasible for reconstructing spectral functions and for solving operator equations without explicitly exploiting the physical model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.