Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Explore-then-Commit Algorithms for Decentralized Two-Sided Matching Markets (2408.08690v1)

Published 16 Aug 2024 in cs.LG, cs.GT, econ.GN, q-fin.EC, and stat.ML

Abstract: Online learning in a decentralized two-sided matching markets, where the demand-side (players) compete to match with the supply-side (arms), has received substantial interest because it abstracts out the complex interactions in matching platforms (e.g. UpWork, TaskRabbit). However, past works assume that each arm knows their preference ranking over the players (one-sided learning), and each player aim to learn the preference over arms through successive interactions. Moreover, several (impractical) assumptions on the problem are usually made for theoretical tractability such as broadcast player-arm match Liu et al. (2020; 2021); Kong & Li (2023) or serial dictatorship Sankararaman et al. (2021); Basu et al. (2021); Ghosh et al. (2022). In this paper, we study a decentralized two-sided matching market, where we do not assume that the preference ranking over players are known to the arms apriori. Furthermore, we do not have any structural assumptions on the problem. We propose a multi-phase explore-then-commit type algorithm namely epoch-based CA-ETC (collision avoidance explore then commit) (\texttt{CA-ETC} in short) for this problem that does not require any communication across agents (players and arms) and hence decentralized. We show that for the initial epoch length of $T_{\circ}$ and subsequent epoch-lengths of $2{l/\gamma} T_{\circ}$ (for the $l-$th epoch with $\gamma \in (0,1)$ as an input parameter to the algorithm), \texttt{CA-ETC} yields a player optimal expected regret of $\mathcal{O}\left(T_{\circ} (\frac{K \log T}{T_{\circ} \Delta2}){1/\gamma} + T_{\circ} (\frac{T}{T_{\circ}})\gamma\right)$ for the $i$-th player, where $T$ is the learning horizon, $K$ is the number of arms and $\Delta$ is an appropriately defined problem gap. Furthermore, we propose a blackboard communication based baseline achieving logarithmic regret in $T$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets