Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introduction to Reinforcement Learning (2408.07712v3)

Published 13 Aug 2024 in cs.AI and cs.LG

Abstract: Reinforcement Learning (RL), a subfield of AI, focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards. This paper provides an overview of RL, covering its core concepts, methodologies, and resources for further learning. It offers a thorough explanation of fundamental components such as states, actions, policies, and reward signals, ensuring readers develop a solid foundational understanding. Additionally, the paper presents a variety of RL algorithms, categorized based on the key factors such as model-free, model-based, value-based, policy-based, and other key factors. Resources for learning and implementing RL, such as books, courses, and online communities are also provided. By offering a clear, structured introduction, this paper aims to simplify the complexities of RL for beginners, providing a straightforward pathway to understanding.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com