Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the spectral radius of unbalanced signed bipartite graphs (2408.07195v1)

Published 13 Aug 2024 in math.CO

Abstract: A signed graph is one that features two types of edges: positive and negative. Balanced signed graphs are those in which all cycles contain an even number of positive edges. In the adjacency matrix of a signed graph, entries can be $0$, $-1$, or $1$, depending on whether $ij$ represents no edge, a negative edge, or a positive edge, respectively. The index of the adjacency matrix of a signed graph $\dot{G}$ is less or equal to the index of the adjacency matrix of its underlying graph $G$, i.e., $\lambda_1(\dot{G}) \le \lambda_1(G)$. Indeed, if $\dot{G}$ is balanced, then $\lambda_1(\dot{G})=\lambda_1(G)$. This inequality becomes strict when $\dot{G}$ is an unbalanced signed graph. Recently, Brunetti and Stani\'c found the whole list of unbalanced signed graphs on $n$ vertices with maximum (resp. minimum) spectral radius. To our knowledge, there has been little research on this problem when unbalanced signed graphs are confined to specific graph classes. In this article, we demonstrate that there is only one unbalanced signed bipartite graph on $n$ vertices with maximum spectral radius, up to an operation on the signed edges known as switching. Additionally, we investigate unbalanced signed complete bipartite graphs on $n$ vertices with a bounded number of edges and maximum spectral radius, where the negative edges induce a tree.

Summary

We haven't generated a summary for this paper yet.