Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics (2408.06103v3)

Published 12 Aug 2024 in math.ST, econ.EM, stat.ME, stat.ML, and stat.TH

Abstract: In this paper, we consider the estimation of regression coefficients and signal-to-noise (SNR) ratio in high-dimensional Generalized Linear Models (GLMs), and explore their implications in inferring popular estimands such as average treatment effects in high-dimensional observational studies. Under the ``proportional asymptotic'' regime and Gaussian covariates with known (population) covariance $\Sigma$, we derive Consistent and Asymptotically Normal (CAN) estimators of our targets of inference through a Method-of-Moments type of estimators that bypasses estimation of high dimensional nuisance functions and hyperparameter tuning altogether. Additionally, under non-Gaussian covariates, we demonstrate universality of our results under certain additional assumptions on the regression coefficients and $\Sigma$. We also demonstrate that knowing $\Sigma$ is not essential to our proposed methodology when the sample covariance matrix estimator is invertible. Finally, we complement our theoretical results with numerical experiments and comparisons with existing literature.

Summary

We haven't generated a summary for this paper yet.