Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Online Optimization of Curriculum Learning Schedules using Evolutionary Optimization (2408.06068v1)

Published 12 Aug 2024 in cs.AI and cs.NE

Abstract: We propose RHEA CL, which combines Curriculum Learning (CL) with Rolling Horizon Evolutionary Algorithms (RHEA) to automatically produce effective curricula during the training of a reinforcement learning agent. RHEA CL optimizes a population of curricula, using an evolutionary algorithm, and selects the best-performing curriculum as the starting point for the next training epoch. Performance evaluations are conducted after every curriculum step in all environments. We evaluate the algorithm on the \textit{DoorKey} and \textit{DynamicObstacles} environments within the Minigrid framework. It demonstrates adaptability and consistent improvement, particularly in the early stages, while reaching a stable performance later that is capable of outperforming other curriculum learners. In comparison to other curriculum schedules, RHEA CL has been shown to yield performance improvements for the final Reinforcement learning (RL) agent at the cost of additional evaluation during training.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube