Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Research on Heterogeneous Computation Resource Allocation based on Data-driven Method (2408.05671v1)

Published 11 Aug 2024 in cs.CE

Abstract: The rapid development of the mobile Internet and the Internet of Things is leading to a diversification of user devices and the emergence of new mobile applications on a regular basis. Such applications include those that are computationally intensive, such as pattern recognition, interactive gaming, virtual reality, and augmented reality. However, the computing and energy resources available on the user's equipment are limited, which presents a challenge in effectively supporting such demanding applications. In this work, we propose a heterogeneous computing resource allocation model based on a data-driven approach. The model first collects and analyzes historical workload data at scale, extracts key features, and builds a detailed data set. Then, a data-driven deep neural network is used to predict future resource requirements. Based on the prediction results, the model adopts a dynamic adjustment and optimization resource allocation strategy. This strategy not only fully considers the characteristics of different computing resources, but also accurately matches the requirements of various tasks, and realizes dynamic and flexible resource allocation, thereby greatly improving the overall performance and resource utilization of the system. Experimental results show that the proposed method is significantly better than the traditional resource allocation method in a variety of scenarios, demonstrating its excellent accuracy and adaptability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.