Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and non-uniqueness of probabilistically strong solutions to 3D stochastic magnetohydrodynamic equations (2408.05450v1)

Published 10 Aug 2024 in math.AP and math.PR

Abstract: We are concerned with the 3D stochastic magnetohydrodynamic (MHD) equations driven by additive noise on torus. For arbitrarily prescribed divergence-free initial data in $L{2}_x$, we construct infinitely many probabilistically strong and analitically weak solutions in the class $L{r}{\Omega}L{t}{\gamma}W_{x}{s,p}$, where $r>1$ and $(s, \gamma, p)$ lie in a supercritical regime with respect to the the Lady\v{z}henskaya-Prodi-Serrin (LPS) criteria. In particular, we get the non-uniqueness of probabilistically strong solutions, which is sharp at one LPS endpoint space. Our proof utilizes intermittent flows which are different from those of Navier-Stokes equations and derives the non-uniqueness even in the high viscous and resistive regime beyond the Lions exponent 5/4. Furthermore, we prove that as the noise intensity tends to zero, the accumulation points of stochastic MHD solutions contain all deterministic solutions to MHD solutions, which include the recently constructed solutions in [28, 29] to deterministic MHD systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.