Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Rewrite: Generalized LLM-Generated Text Detection (2408.04237v1)

Published 8 Aug 2024 in cs.CL

Abstract: LLMs can be abused at scale to create non-factual content and spread disinformation. Detecting LLM-generated content is essential to mitigate these risks, but current classifiers often fail to generalize in open-world contexts. Prior work shows that LLMs tend to rewrite LLM-generated content less frequently, which can be used for detection and naturally generalizes to unforeseen data. However, we find that the rewriting edit distance between human and LLM content can be indistinguishable across domains, leading to detection failures. We propose training an LLM to rewrite input text, producing minimal edits for LLM-generated content and more edits for human-written text, deriving a distinguishable and generalizable edit distance difference across different domains. Experiments on text from 21 independent domains and three popular LLMs (e.g., GPT-4o, Gemini, and Llama-3) show that our classifier outperforms the state-of-the-art zero-shot classifier by up to 20.6% on AUROC score and the rewriting classifier by 9.2% on F1 score. Our work suggests that LLM can effectively detect machine-generated text if they are trained properly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Wei Hao (35 papers)
  2. Ran Li (191 papers)
  3. Weiliang Zhao (2 papers)
  4. Junfeng Yang (80 papers)
  5. Chengzhi Mao (38 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com