Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Quantitative Convergence of Quadratically Regularized Linear Programs (2408.04088v2)

Published 7 Aug 2024 in math.OC, math.AP, and math.PR

Abstract: Linear programs with quadratic regularization are attracting renewed interest due to their applications in optimal transport: unlike entropic regularization, the squared-norm penalty gives rise to sparse approximations of optimal transport couplings. It is well known that the solution of a quadratically regularized linear program over any polytope converges stationarily to the minimal-norm solution of the linear program when the regularization parameter tends to zero. However, that result is merely qualitative. Our main result quantifies the convergence by specifying the exact threshold for the regularization parameter, after which the regularized solution also solves the linear program. Moreover, we bound the suboptimality of the regularized solution before the threshold. These results are complemented by a convergence rate for the regime of large regularization. We apply our general results to the setting of optimal transport, where we shed light on how the threshold and suboptimality depend on the number of data points.

Citations (3)

Summary

We haven't generated a summary for this paper yet.