Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Forecasting High Frequency Order Flow Imbalance (2408.03594v1)

Published 7 Aug 2024 in q-fin.TR

Abstract: Market information events are generated intermittently and disseminated at high speeds in real-time. Market participants consume this high-frequency data to build limit order books, representing the current bids and offers for a given asset. The arrival processes, or the order flow of bid and offer events, are asymmetric and possibly dependent on each other. The quantum and direction of this asymmetry are often associated with the direction of the traded price movement. The Order Flow Imbalance (OFI) is an indicator commonly used to estimate this asymmetry. This paper uses Hawkes processes to estimate the OFI while accounting for the lagged dependence in the order flow between bids and offers. Secondly, we develop a method to forecast the near-term distribution of the OFI, which can then be used to compare models for forecasting OFI. Thirdly, we propose a method to compare the forecasts of OFI for an arbitrarily large number of models. We apply the approach developed to tick data from the National Stock Exchange and observe that the Hawkes process modeled with a Sum of Exponential's kernel gives the best forecast among all competing models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.