Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Coarse-grained Visual Language Navigation Task Planning Enhanced by Event Knowledge Graph (2408.02535v1)

Published 5 Aug 2024 in cs.IR, cs.HC, and cs.RO

Abstract: Visual language navigation (VLN) is one of the important research in embodied AI. It aims to enable an agent to understand the surrounding environment and complete navigation tasks. VLN instructions could be categorized into coarse-grained and fine-grained commands. Fine-grained command describes a whole task with subtasks step-by-step. In contrast, coarse-grained command gives an abstract task description, which more suites human habits. Most existing work focuses on the former kind of instruction in VLN tasks, ignoring the latter abstract instructions belonging to daily life scenarios. To overcome the above challenge in abstract instruction, we attempt to consider coarse-grained instruction in VLN by event knowledge enhancement. Specifically, we first propose a prompt-based framework to extract an event knowledge graph (named VLN-EventKG) for VLN integrally over multiple mainstream benchmark datasets. Through small and LLM collaboration, we realize knowledge-enhanced navigation planning (named EventNav) for VLN tasks with coarse-grained instruction input. Additionally, we design a novel dynamic history backtracking module to correct potential error action planning in real time. Experimental results in various public benchmarks show our knowledge-enhanced method has superiority in coarse-grained-instruction VLN using our proposed VLN-EventKG with over $5\%$ improvement in success rate. Our project is available at https://sites.google.com/view/vln-eventkg

Summary

We haven't generated a summary for this paper yet.