Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Climate-Driven Doubling of U.S. Maize Loss Probability: Interactive Simulation with Neural Network Monte Carlo (2408.02217v2)

Published 5 Aug 2024 in cs.LG and q-fin.RM

Abstract: Climate change not only threatens agricultural producers but also strains related public agencies and financial institutions. These important food system actors include government entities tasked with insuring grower livelihoods and supporting response to continued global warming. We examine future risk within the U.S. Corn Belt geographic region for one such crucial institution: the U.S. Federal Crop Insurance Program. Specifically, we predict the impacts of climate-driven crop loss at a policy-salient "risk unit" scale. Built through our presented neural network Monte Carlo method, simulations anticipate both more frequent and more severe losses that would result in a costly doubling of the annual probability of maize Yield Protection insurance claims at mid-century. We also provide an open source pipeline and interactive visualization tools to explore these results with configurable statistical treatments. Altogether, we fill an important gap in current understanding for climate adaptation by bridging existing historic yield estimation and climate projection to predict crop loss metrics at policy-relevant granularity.

Summary

We haven't generated a summary for this paper yet.