Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving noisy student training for low-resource languages in End-to-End ASR using CycleGAN and inter-domain losses (2407.21061v1)

Published 26 Jul 2024 in cs.CL, cs.SD, and eess.AS

Abstract: Training a semi-supervised end-to-end speech recognition system using noisy student training has significantly improved performance. However, this approach requires a substantial amount of paired speech-text and unlabeled speech, which is costly for low-resource languages. Therefore, this paper considers a more extreme case of semi-supervised end-to-end automatic speech recognition where there are limited paired speech-text, unlabeled speech (less than five hours), and abundant external text. Firstly, we observe improved performance by training the model using our previous work on semi-supervised learning "CycleGAN and inter-domain losses" solely with external text. Secondly, we enhance "CycleGAN and inter-domain losses" by incorporating automatic hyperparameter tuning, calling it "enhanced CycleGAN inter-domain losses." Thirdly, we integrate it into the noisy student training approach pipeline for low-resource scenarios. Our experimental results, conducted on six non-English languages from Voxforge and Common Voice, show a 20% word error rate reduction compared to the baseline teacher model and a 10% word error rate reduction compared to the baseline best student model, highlighting the significant improvements achieved through our proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.