Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Resolution Spatial Transcriptomics from Histology Images using HisToSGE (2407.20518v1)

Published 30 Jul 2024 in eess.IV, cs.AI, and cs.CV

Abstract: Spatial transcriptomics (ST) is a groundbreaking genomic technology that enables spatial localization analysis of gene expression within tissue sections. However, it is significantly limited by high costs and sparse spatial resolution. An alternative, more cost-effective strategy is to use deep learning methods to predict high-density gene expression profiles from histological images. However, existing methods struggle to capture rich image features effectively or rely on low-dimensional positional coordinates, making it difficult to accurately predict high-resolution gene expression profiles. To address these limitations, we developed HisToSGE, a method that employs a Pathology Image Large Model (PILM) to extract rich image features from histological images and utilizes a feature learning module to robustly generate high-resolution gene expression profiles. We evaluated HisToSGE on four ST datasets, comparing its performance with five state-of-the-art baseline methods. The results demonstrate that HisToSGE excels in generating high-resolution gene expression profiles and performing downstream tasks such as spatial domain identification. All code and public datasets used in this paper are available at https://github.com/wenwenmin/HisToSGE and https://zenodo.org/records/12792163.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Rao, D. Barkley, G. S. França, and I. Yanai, “Exploring tissue architecture using spatial transcriptomics,” Nature, vol. 596, no. 7871, pp. 211–220, 2021.
  2. A. Chen, S. Liao, M. Cheng, K. Ma, L. Wu, Y. Lai, X. Qiu, J. Yang, J. Xu, S. Hao et al., “Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays,” Cell, vol. 185, no. 10, pp. 1777–1792, 2022.
  3. H. Xu, S. Wang, M. Fang, S. Luo, C. Chen, S. Wan, R. Wang, M. Tang, T. Xue, B. Li et al., “Spacel: deep learning-based characterization of spatial transcriptome architectures,” Nature Communications, vol. 14, no. 1, pp. 7603–7621, 2023.
  4. W.-T. Chen, A. Lu, K. Craessaerts, B. Pavie, C. S. Frigerio, N. Corthout, X. Qian, J. Laláková, M. Kühnemund, I. Voytyuk et al., “Spatial transcriptomics and in situ sequencing to study alzheimer’s disease,” Cell, vol. 182, no. 4, pp. 976–991, 2020.
  5. G. Cui, K. Dong, J.-Y. Zhou, S. Li, Y. Wu, Q. Han, B. Yao, Q. Shen, Y.-L. Zhao, Y. Yang et al., “Spatiotemporal transcriptomic atlas reveals the dynamic characteristics and key regulators of planarian regeneration,” Nature Communications, vol. 14, no. 1, pp. 3205–3221, 2023.
  6. M. Pang, K. Su, and M. Li, “Leveraging information in spatial transcriptomics to predict super-resolution gene expression from histology images in tumors,” BioRxiv, pp. 1–31, 2021.
  7. D. Zhang, A. Schroeder et al., “Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology,” Nature Biotechnology, pp. 1–9, 2024.
  8. E. Zhao, M. R. Stone et al., “Spatial transcriptomics at subspot resolution with bayesspace,” Nature Biotechnology, vol. 39, no. 11, pp. 1375–1384, 2021.
  9. S. Xue, F. Zhu, C. Wang, and W. Min, “stentrans: Transformer-based deep learning for spatial transcriptomics enhancement,” in International Symposium on Bioinformatics Research and Applications.   Springer, 2024, pp. 63–75.
  10. L. N. Waylen, H. T. Nim, L. G. Martelotto, and M. Ramialison, “From whole-mount to single-cell spatial assessment of gene expression in 3d,” Communications Biology, vol. 3, no. 1, pp. 602–613, 2020.
  11. W. Min, Z. Shi, J. Zhang, J. Wan, and C. Wang, “Multimodal contrastive learning for spatial gene expression prediction using histology images,” arXiv preprint arXiv:2407.08216, pp. 1–9, 2024.
  12. B. He, L. Bergenstråhle, L. Stenbeck, A. Abid, A. Andersson, Å. Borg, J. Maaskola, J. Lundeberg, and J. Zou, “Integrating spatial gene expression and breast tumour morphology via deep learning,” Nature Biomedical Engineering, vol. 4, no. 8, pp. 827–834, 2020.
  13. T. Monjo, M. Koido, S. Nagasawa, Y. Suzuki, and Y. Kamatani, “Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation,” Scientific Reports, vol. 12, no. 1, pp. 4133–4145, 2022.
  14. A. Dosovitskiy, L. Beyer et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2021, pp. 1–22.
  15. Y. Jia, J. Liu, L. Chen, T. Zhao, and Y. Wang, “THItoGene: a deep learning method for predicting spatial transcriptomics from histological images,” Briefings in Bioinformatics, vol. 25, no. 1, pp. 464–474, 2024.
  16. S. Li, K. Gai, K. Dong, Y. Zhang, and S. Zhang, “High-density generation of spatial transcriptomics with stage,” Nucleic Acids Research, vol. 52, no. 9, pp. 4843–4856, 2024.
  17. R. J. Chen, T. Ding, M. Y. Lu, D. F. Williamson, G. Jaume, A. H. Song, B. Chen, A. Zhang, D. Shao, M. Shaban et al., “Towards a general-purpose foundation model for computational pathology,” Nature Medicine, vol. 30, no. 3, pp. 850–862, 2024.
  18. K. R. Maynard, L. Collado-Torres et al., “Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex,” Nature Neuroscience, vol. 24, no. 3, pp. 425–436, 2021.
  19. S. M. Sunkin, L. Ng, C. Lau, T. Dolbeare, T. L. Gilbert, C. L. Thompson, M. Hawrylycz, and C. Dang, “Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system,” Nucleic Acids Research, vol. 41, no. D1, pp. D996–D1008, 2012.
  20. A. Janesick, R. Shelansky et al., “High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis,” Nature Communications, vol. 14, no. 1, pp. 8353–8368, 2023.
  21. K. Dong and S. Zhang, “Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder,” Nature Communications, vol. 13, no. 1, pp. 1739–1751, 2022.
  22. W. Min, D. Fang, J. Chen, and S. Zhang, “Dimensionality reduction and denoising of spatial transcriptomics data using dual-channel masked graph autoencoder,” bioRxiv, pp. 01–20, 2024.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com