Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-Time Analysis of Asynchronous Multi-Agent TD Learning (2407.20441v1)

Published 29 Jul 2024 in cs.MA

Abstract: Recent research endeavours have theoretically shown the beneficial effect of cooperation in multi-agent reinforcement learning (MARL). In a setting involving $N$ agents, this beneficial effect usually comes in the form of an $N$-fold linear convergence speedup, i.e., a reduction - proportional to $N$ - in the number of iterations required to reach a certain convergence precision. In this paper, we show for the first time that this speedup property also holds for a MARL framework subject to asynchronous delays in the local agents' updates. In particular, we consider a policy evaluation problem in which multiple agents cooperate to evaluate a common policy by communicating with a central aggregator. In this setting, we study the finite-time convergence of \texttt{AsyncMATD}, an asynchronous multi-agent temporal difference (TD) learning algorithm in which agents' local TD update directions are subject to asynchronous bounded delays. Our main contribution is providing a finite-time analysis of \texttt{AsyncMATD}, for which we establish a linear convergence speedup while highlighting the effect of time-varying asynchronous delays on the resulting convergence rate.

Summary

We haven't generated a summary for this paper yet.