Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring financial stock returns correlation from complex network analysis (2407.20380v1)

Published 29 Jul 2024 in q-fin.ST, physics.soc-ph, and q-fin.PM

Abstract: Financial stock returns correlations have been studied in the prism of random matrix theory, to distinguish the signal from the "noise". Eigenvalues of the matrix that are above the rescaled Marchenko Pastur distribution can be interpreted as collective modes behavior while the modes under are usually considered as noise. In this analysis we use complex network analysis to simulate the "noise" and the "market" component of the return correlations, by introducing some meaningful correlations in simulated geometric Brownian motion for the stocks. We find that the returns correlation matrix is dominated by stocks with high eigenvector centrality and clustering found in the network. We then use simulated "market" random walks to build an optimal portfolio and find that the overall return performs better than using the historical mean-variance data, up to 50% on short time scale.

Citations (1)

Summary

We haven't generated a summary for this paper yet.