Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotion-Driven Melody Harmonization via Melodic Variation and Functional Representation (2407.20176v2)

Published 29 Jul 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Emotion-driven melody harmonization aims to generate diverse harmonies for a single melody to convey desired emotions. Previous research found it hard to alter the perceived emotional valence of lead sheets only by harmonizing the same melody with different chords, which may be attributed to the constraints imposed by the melody itself and the limitation of existing music representation. In this paper, we propose a novel functional representation for symbolic music. This new method takes musical keys into account, recognizing their significant role in shaping music's emotional character through major-minor tonality. It also allows for melodic variation with respect to keys and addresses the problem of data scarcity for better emotion modeling. A Transformer is employed to harmonize key-adaptable melodies, allowing for keys determined in rule-based or model-based manner. Experimental results confirm the effectiveness of our new representation in generating key-aware harmonies, with objective and subjective evaluations affirming the potential of our approach to convey specific valence for versatile melody.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jingyue Huang (7 papers)
  2. Yi-Hsuan Yang (89 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.