Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Exploring Quantum Active Learning for Materials Design and Discovery (2407.18731v1)

Published 26 Jul 2024 in quant-ph, cond-mat.mtrl-sci, physics.atm-clus, and physics.chem-ph

Abstract: The meeting of AI and quantum computing is already a reality; quantum machine learning (QML) promises the design of better regression models. In this work, we extend our previous studies of materials discovery using classical active learning (AL), which showed remarkable economy of data, to explore the use of quantum algorithms within the AL framework (QAL) as implemented in the MLChem4D and QMLMaterials codes. The proposed QAL uses quantum support vector regressor (QSVR) or a quantum Gaussian process regressor (QGPR) with various quantum kernels and different feature maps. Data sets include perovskite properties (piezoelectric coefficient, band gap, energy storage) and the structure optimization of a doped nanoparticle (3Al@Si11) chosen to compare with classical AL results. Our results revealed that the QAL method improved the searches in most cases, but not all, seemingly correlated with the roughness of the data. QAL has the potential of finding optimum solutions, within chemical space, in materials science and elsewhere in chemistry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube