Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Super-Localized Orthogonal Decomposition Method (2407.18671v1)

Published 26 Jul 2024 in math.NA and cs.NA

Abstract: We present the construction of a sparse-compressed operator that approximates the solution operator of elliptic PDEs with rough coefficients. To derive the compressed operator, we construct a hierarchical basis of an approximate solution space, with superlocalized basis functions that are quasi-orthogonal across hierarchy levels with respect to the inner product induced by the energy norm. The superlocalization is achieved through a novel variant of the Super-Localized Orthogonal Decomposition method that is built upon corrections of basis functions arising from the Localized Orthogonal Decomposition method. The hierarchical basis not only induces a sparse compression of the solution space but also enables an orthogonal multiresolution decomposition of the approximate solution operator, decoupling scales and solution contributions of each level of the hierarchy. With this decomposition, the solution of the PDE reduces to the solution of a set of independent linear systems per level with mesh-independent condition numbers that can be computed simultaneously. We present an accuracy study of the compressed solution operator as well as numerical results illustrating our theoretical findings and beyond, revealing that desired optimal error rates with well-behaved superlocalized basis functions can still be attained even in the challenging case of coefficients with high-contrast channels.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com