Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Constacyclic BCH Codes over Qudits: A Spectral-Domain Approach (2407.16814v1)

Published 23 Jul 2024 in quant-ph, cs.IT, and math.IT

Abstract: We characterize constacyclic codes in the spectral domain using the finite field Fourier transform (FFFT) and propose a reduced complexity method for the spectral-domain decoder. Further, we also consider repeated-root constacyclic codes and characterize them in terms of symmetric and asymmetric $q$-cyclotomic cosets. Using zero sets of classical self-orthogonal and dual-containing codes, we derive quantum error correcting codes (QECCs) for both constacyclic Bose-Chaudhuri-Hocquenghem (BCH) codes and repeated-root constacyclic codes. We provide some examples of QECCs derived from repeated-root constacyclic codes and show that constacyclic BCH codes are more efficient than repeated-root constacyclic codes. Finally, quantum encoders and decoders are also proposed in the transform domain for Calderbank-Shor-Steane CSS-based quantum codes. Since constacyclic codes are a generalization of cyclic codes with better minimum distance than cyclic codes with the same code parameters, the proposed results are practically useful.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. “Error-correcting codes”. MIT Press.  (1972).
  2. “Constacyclic codes over finite fields”. Finite Fields and Their Applications 18, 1217–1231 (2012).
  3. “Repeated-root constacyclic codes of length l⁢ps𝑙superscript𝑝𝑠lp^{s}italic_l italic_p start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT and their duals”. Discrete Applied Mathematics 177, 60–70 (2014).
  4. H. Q. Dinh. “Repeated-root cyclic and negacyclic codes of length 6⁢ps6superscript𝑝𝑠6p^{s}6 italic_p start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT”. AMS Contemp Math 609, 69–87 (2014).
  5. “On repeated-root cyclic codes”. IEEE Transactions on Information Theory 37, 337–342 (1991).
  6. R. E. Blahut. “Algebraic codes in the frequency domain”. In Algebraic Coding Theory and Applications. Pages 447–494. Springer (1979).
  7. R. E. Blahut. “Theory and practice of error control codes”. Addison-Wesley Publishing Company.  (1983).
  8. R. E. Blahut. “Transform techniques for error control codes”. IBM Journal of Research and Development 23, 299–315 (1979).
  9. B. S. Rajan and M. Siddiqi. “Transform domain characterization of abelian codes”. IEEE Transactions on Information Theory 38, 1817–1821 (1992).
  10. B. S. Rajan and M. Siddiqi. “A generalized DFT for Abelian codes over ℤmsubscriptℤ𝑚\mathbb{Z}_{m}blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT”. IEEE Transactions on Information Theory 40, 2082–2090 (1994).
  11. B. S. Rajan and M. Siddiqi. “Transform domain characterization of cyclic codes over ℤmsubscriptℤ𝑚\mathbb{Z}_{m}blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT”. Applicable Algebra in Engineering, Communication and Computing 5, 261–275 (1994).
  12. J. L. Massey. “The discrete Fourier transform in coding and cryptography”. IEEE Inform (1998).
  13. “DFT domain characterization of quasi-cyclic codes”. Applicable Algebra in Engineering, Communication and Computing 13, 453–474 (2003).
  14. A. Mondal and S. S. Garani. “Efficient hardware architectures for 2-D BCH codes in the frequency domain for two-dimensional data storage applications”. IEEE Transactions on Magnetics 57, 1–14 (2021).
  15. A. Mondal and S. S. Garani. “Efficient hardware design architectures for BCH product codes in the frequency domain”. In 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). Pages 703–706. IEEE (2020).
  16. D. Gottesman. “Stabilizer codes and quantum error correction”. California Institute of Technology.  (1997).
  17. “Good quantum error-correcting codes exist”. Physical Review A 54, 1098 (1996).
  18. A. M. Steane. “Error correcting codes in quantum theory”. Physical Review Letters 77, 793 (1996).
  19. “Entanglement-assisted quantum error-correcting codes over arbitrary finite fields”. Quantum Information Processing 18, 116 (2019).
  20. “Non-binary entanglement-assisted stabilizer codes”. Quantum Information Processing 20, 256 (2021).
  21. “Nonbinary quantum stabilizer codes”. IEEE Transactions on Information Theory 47, 3065–3072 (2001).
  22. “Non-binary entanglement-assisted quantum stabilizer codes”. Science China. Information Sciences 60, 42501 (2017).
  23. “Nonbinary stabilizer codes over finite fields”. IEEE transactions on information theory 52, 4892–4914 (2006).
  24. M. Grassl and T. Beth. “Quantum BCH codes” (1999).
  25. “Quantum convolutional BCH codes”. In 2007 10th Canadian Workshop on Information Theory (CWIT). Pages 180–183. IEEE (2007).
  26. A. M. Steane. “Simple quantum error-correcting codes”. Physical Review A 54, 4741 (1996).
  27. M. Grassl and T. Beth. “Cyclic quantum error–correcting codes and quantum shift registers”. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456, 2689–2706 (2000).
  28. G. Ying and Z. Gui-Hua. “Quantum BCH codes based on spectral techniques”. Communications in Theoretical Physics 45, 283–286 (2006).
  29. “Quantum error correction via codes over GF (4)”. IEEE Transactions on Information Theory 44, 1369–1387 (1998).
  30. A. Chowdhury and B. S. Rajan. “Quantum error correction via codes over GF (2)”. In 2009 IEEE International Symposium on Information Theory. Pages 789–793. IEEE (2009).
  31. Z. Wan. “Lectures on finite fields and Galois rings”. World Scientific Publishing Company.  (2003).
  32. R. Lidl and H. Niederreiter. “Finite fields”. Cambridge University Press.  (1997).
  33. S. Boztas. “Constacyclic codes and constacyclic DFTs”. In Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252). Page 235. IEEE (1998).
  34. A. Hocquenghem. “Codes correcteurs d’erreurs”. Chiffers 2, 147–156 (1959).
  35. “On a class of error correcting binary group codes”. Information and control 3, 68–79 (1960).
  36. D. Gorenstein and N. Zierler. “A class of error-correcting codes in pmsuperscript𝑝𝑚p^{m}italic_p start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT symbols”. Journal of the Society for Industrial and Applied Mathematics 9, 207–214 (1961).
  37. L. Shu. “Error control coding”. Pearson Education India.  (2011).
  38. “Generalizations of the BCH bound”. Information and control 20, 489–498 (1972).
  39. R. T. Moenck. “Fast computation of GCDs”. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing. Pages 142–151.  (1973).
  40. J. Von Zur Gathen and J. Gerhard. “Modern computer algebra”. Cambridge University Press.  (2013).
  41. N. Chen and Z. Yan. “Complexity analysis of Reed-Solomon decoding over GF⁢(2m)GFsuperscript2𝑚\text{GF}(2^{m})GF ( 2 start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) without using syndromes”. EURASIP Journal on Wireless Communications and Networking 2008, 1–11 (2008).
  42. B. Mielnik. “Geometry of quantum states”. Communications in Mathematical Physics 9, 55–80 (1968).
  43. “Quantum error correction”. Cambridge University Press.  (2013).
  44. “Entanglement-assisted Reed–Solomon codes over qudits: theory and architecture”. Quantum Information Processing 20, 1–68 (2021).
  45. W. C. Huffman and V. Pless. “Fundamentals of error-correcting codes”. Cambridge University Press.  (2010).
  46. J. M. Farinholt. “An ideal characterization of the clifford operators”. Journal of Physics A: Mathematical and Theoretical 47, 305303 (2014).
  47. “Efficient quantum circuits for non-qubit quantum error-correcting codes”. International Journal of Foundations of Computer Science 14, 757–775 (2003).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com