Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tadpole conjecture in non-geometric backgrounds (2407.16758v2)

Published 23 Jul 2024 in hep-th

Abstract: Calabi-Yau compactifications have typically a large number of complex structure and/or K\"ahler moduli that have to be stabilised in phenomenologically-relevant vacua. The former can in principle be done by fluxes in type IIB solutions. However, the tadpole conjecture proposes that the number of stabilised moduli can at most grow linearly with the tadpole charge of the fluxes required for stabilisation. We scrutinise this conjecture in the $26$ Gepner model: a non-geometric background mirror dual to a rigid Calabi-Yau manifold, in the deep interior of moduli space. By constructing an extensive set of supersymmetric Minkowski flux solutions, we spectacularly confirm the linear growth, while achieving a slightly higher ratio of stabilised moduli to flux charge than the conjectured upper bound. As a byproduct, we obtain for the first time a set of solutions within the tadpole bound where all complex structure moduli are massive. Since the $26$ model has no K\"ahler moduli, these show that the massless Minkowski conjecture does not hold beyond supergravity.

Summary

We haven't generated a summary for this paper yet.