Offsetting Perceptual Bias in Visual Clustering: The Role of Point Size Adjustment in Variable Display Sizes (2407.16322v1)
Abstract: Scatterplots are frequently shared across different displays in collaborative and communicative visual analytics. However, variations in displays diversify scatterplot sizes. Such variations can influence the perception of clustering patterns, introducing potential biases leading to misinterpretations in cluster analysis. In this research, we explore how scatterplot size affects cluster assignment and investigate how we can offset such bias. We first conduct a controlled study asking participants to perform visual clustering on scatterplots of varying sizes. We found that changes in scatterplot size significantly alter cluster perception in three key features. In our subsequent experiment, we examine how adjusting point sizes can mitigate this bias. As a result, we verify that adjusting point size can effectively counteract the perceptual biases caused by varying scatterplot sizes. We wrap up our research by discussing the necessity and applicability of our findings in realworld applications.
- Clustme: A visual quality measure for ranking monochrome scatterplots based on cluster patterns. Computer Graphics Forum, 38(3):225–236, 2019. doi: 10 . 1111/cgf . 13684
- Clustme: A visual quality measure for ranking monochrome scatterplots based on cluster patterns. In Computer Graphics Forum, vol. 38, pp. 225–236. Wiley Online Library, 2019.
- Information visualization on large, high-resolution displays: issues, challenges, and opportunities. Information Visualization, 10(4):341–355, oct 2011. doi: 10 . 1177/1473871611415997
- W. Cleveland and R. McGill. The many faces of a scatterplot. Journal of the American Statistical Association, 79:807–822, 1984. doi: 10 . 1080/01621459 . 1984 . 10477098
- W. S. Cleveland and R. McGill. The many faces of a scatterplot. Journal of the American Statistical Association, 79(388):807–822, 1984.
- C. Healey and J. Enns. Attention and visual memory in visualization and computer graphics. IEEE transactions on visualization and computer graphics, 18(7):1170–1188, 2011.
- J. Heer and M. Agrawala. Multi-scale banking to 45 degrees. IEEE Transactions on Visualization and Computer Graphics, 12(5):701–708, 2006. doi: 10 . 1109/TVCG . 2006 . 163
- J. Heer and M. Bostock. Crowdsourcing graphical perception: using mechanical turk to assess visualization design. CHI ’10. Association for Computing Machinery, New York, NY, USA, 2010. doi: 10 . 1145/1753326 . 1753357
- The weighted average illusion: Biases in perceived mean position in scatterplots. IEEE Transactions on Visualization and Computer Graphics, 28(1):987–997, 2022. doi: 10 . 1109/TVCG . 2021 . 3114783
- M. R. Jakobsen and K. Hornbæk. Interactive visualizations on large and small displays: The interrelation of display size, information space, and scale. IEEE Transactions on Visualization and Computer Graphics, 19:2336–2345, 2013. doi: 10 . 1109/TVCG . 2013 . 170
- Clams: A cluster ambiguity measure for estimating perceptual variability in visual clustering. IEEE Transactions on Visualization and Computer Graphics, 30(1):770–780, 2024. doi: 10 . 1109/TVCG . 2023 . 3327201
- The impact of immersion on cluster identification tasks. IEEE Transactions on Visualization and Computer Graphics, 26:525–535, 2020. doi: 10 . 1109/TVCG . 2019 . 2934395
- S. Lewandowsky and I. Spence. Discriminating strata in scatterplots. Journal of the American Statistical Association, 84(407):682–688, 1989.
- Cluster-based visual abstraction for multivariate scatterplots. IEEE Transactions on Visualization and Computer Graphics, 24:2531–2545, 2018. doi: 10 . 1109/TVCG . 2017 . 2754480
- Scatternet: A deep subjective similarity model for visual analysis of scatterplots. IEEE transactions on visualization and computer graphics, 26(3):1562–1576, 2018.
- Evaluation on interactive visualization data with scatterplots. Visual Informatics, 4(4):1–10, 2020. doi: 10 . 1016/j . visinf . 2020 . 09 . 004
- G. J. Quadri and P. Rosen. Modeling the influence of visual density on cluster perception in scatterplots using topology. IEEE Transactions on Visualization and Computer Graphics, 27(2):1829–1839, 2020.
- A. Sarikaya and M. Gleicher. Scatterplots: Tasks, data, and designs. IEEE Transactions on Visualization and Computer Graphics, 24(1):402–412, 2018. doi: 10 . 1109/TVCG . 2017 . 2744184
- Design factors for summary visualization in visual analytics. In Computer Graphics Forum, vol. 37, pp. 145–156. Wiley Online Library, 2018.
- S. Schirra and C. Barta. Foldables and 2-in-1s: Understanding and supporting the needs of hybrid device users. In Proceedings of the 2021 ACM International Conference on Interactive Media Experiences, IMX ’21, p. 237–240. Association for Computing Machinery, New York, NY, USA, 2021. doi: 10 . 1145/3452918 . 3465503
- A taxonomy of visual cluster separation factors. Computer Graphics Forum, 31(3pt4):1335–1344, 2012. doi: 10 . 1111/j . 1467-8659 . 2012 . 03125 . x
- D. A. Szafir. Modeling color difference for visualization design. IEEE Transactions on Visualization and Computer Graphics, 24(1):392–401, 2018. doi: 10 . 1109/TVCG . 2017 . 2744359
- L. Tremmel. The visual separability of plotting symbols in scatterplots. Journal of Computational and Graphical Statistics, 4(2):101–112, 1995.
- C. Ware. Information Visualization: Perception for Design: Second Edition. 04 2004.
- Evaluating perceptual bias during geometric scaling of scatterplots. IEEE Transactions on Visualization and Computer Graphics, 26(1):321–331, Jan. 2020. doi: 10 . 1109/tvcg . 2019 . 2934208
- The shape parameter of a two-variable graph. Journal of the American Statistical Association, 83(402):289–300, 1988. doi: 10 . 1080/01621459 . 1988 . 10478598
- Visual clustering factors in scatterplots. IEEE Computer Graphics and Applications, 41(5):79–89, 2021.
- M. Ziefle. Effects of display resolution on visual performance. Human factors, 40:554–68, 01 1999. doi: 10 . 1518/001872098779649355