Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning (2407.16091v1)

Published 22 Jul 2024 in math.NA, cs.LG, cs.NA, and q-bio.NC

Abstract: Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech. Early and accurate recognition of PD through speech analysis can greatly enhance patient outcomes by enabling timely intervention. This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches. We discuss the process of data wrangling, including data collection, cleaning, transformation, and exploratory data analysis, to prepare the dataset for machine learning applications. Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection. Each method is evaluated based on accuracy, precision, and training time. Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls. The study concludes with a comparison of the different models, identifying the most effective approaches for PD recognition, and suggesting potential directions for future research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.