In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods (2407.15776v1)
Abstract: Quantum Machine Learning (QML) has gathered significant attention through approaches like Quantum Kernel Machines. While these methods hold considerable promise, their quantum nature presents inherent challenges. One major challenge is the limited resolution of estimated kernel values caused by the finite number of circuit runs performed on a quantum device. In this study, we propose a comprehensive system of rules and heuristics for estimating the required number of circuit runs in quantum kernel methods. We introduce two critical effects that necessitate an increased measurement precision through additional circuit runs: the spread effect and the concentration effect. The effects are analyzed in the context of fidelity and projected quantum kernels. To address these phenomena, we develop an approach for estimating desired precision of kernel values, which, in turn, is translated into the number of circuit runs. Our methodology is validated through extensive numerical simulations, focusing on the problem of exponential value concentration. We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption. The results provide insights into the possible benefits of quantum kernel methods, offering a guidance for their application in quantum machine learning tasks.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.
- V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, 2019.
- M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert spaces,” Physical review letters, vol. 122, no. 4, p. 040504, 2019.
- S. Miyabe, B. Quanz, N. Shimada, A. Mitra, T. Yamamoto, V. Rastunkov, D. Alevras, M. Metcalf, D. J. King, M. Mamouei, et al., “Quantum multiple kernel learning in financial classification tasks,” arXiv preprint arXiv:2312.00260, 2023.
- M. Grossi, N. Ibrahim, V. Radescu, R. Loredo, K. Voigt, C. Von Altrock, and A. Rudnik, “Mixed quantum–classical method for fraud detection with quantum feature selection,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–12, 2022.
- A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani, M. Riedel, and K. Michielsen, “Quantum support vector machine algorithms for remote sensing data classification,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 2608–2611, IEEE, 2021.
- A. Miroszewski, J. Mielczarek, G. Czelusta, F. Szczepanek, B. Grabowski, B. Le Saux, and J. Nalepa, “Detecting clouds in multispectral satellite images using quantum-kernel support vector machines,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 7601–7613, 2023.
- Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum computing for drug discovery,” IBM Journal of Research and Development, vol. 62, no. 6, pp. 6–1, 2018.
- J. Chan, C. Zhou, M. Livny, S. Yoo, F. Carminati, W. Guan, A. Wang, P. Spentzouris, S. Sun, A. C. Li, et al., “Sissa: Application of quantum machine learning to high energy physics analysis at lhc using ibm quantum computer simulators and ibm quantum computer hardware,” Proceedings of Science, p. 930, 2021.
- Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum speed-up in supervised machine learning,” Nature Physics, vol. 17, no. 9, pp. 1013–1017, 2021.
- X. Vasques, H. Paik, and L. Cif, “Application of quantum machine learning using quantum kernel algorithms on multiclass neuron m-type classification,” Scientific Reports, vol. 13, no. 1, p. 11541, 2023.
- R. Mengoni and A. Di Pierro, “Kernel methods in quantum machine learning,” Quantum Machine Intelligence, vol. 1, no. 3-4, pp. 65–71, 2019.
- N. Herrmann, D. Arya, M. W. Doherty, A. Mingare, J. C. Pillay, F. Preis, and S. Prestel, “Quantum utility–definition and assessment of a practical quantum advantage,” arXiv preprint arXiv:2303.02138, 2023.
- M. Hibat-Allah, M. Mauri, J. Carrasquilla, and A. Perdomo-Ortiz, “A framework for demonstrating practical quantum advantage: Racing quantum against classical generative models,” arXiv preprint arXiv:2303.15626, 2023.
- S. Thanasilp, S. Wang, M. Cerezo, and Z. Holmes, “Exponential concentration in quantum kernel methods,” Nature Communications, vol. 15, no. 1, p. 5200, 2024.
- H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, “Power of data in quantum machine learning,” Nature communications, vol. 12, no. 1, p. 2631, 2021.
- Y. Suzuki, H. Kawaguchi, and N. Yamamoto, “Quantum fisher kernel for mitigating the vanishing similarity issue,” Quantum Science and Technology, 2022.
- M. Cerezo, M. Larocca, D. García-Martín, N. Diaz, P. Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A. Ijaz, S. Thanasilp, et al., “Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing,” arXiv preprint arXiv:2312.09121, 2023.
- T. Sejnowski and R. Gorman, “Connectionist Bench (Sonar, Mines vs. Rocks).” UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5T01Q.
- C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, pp. 273–297, 1995.
- A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and computing, vol. 14, pp. 199–222, 2004.
- B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.
- Springer Science & Business Media, 1 ed., June 2011.
- N. B. Larson, J. Chen, and D. J. Schaid, “A review of kernel methods for genetic association studies,” Genetic epidemiology, vol. 43, no. 2, pp. 122–136, 2019.
- T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171 – 1220, 2008.
- A. Apsemidis, S. Psarakis, and J. M. Moguerza, “A review of machine learning kernel methods in statistical process monitoring,” Computers & Industrial Engineering, vol. 142, p. 106376, 2020.
- J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
- L. A. Goldberg and H. Guo, “The complexity of approximating complex-valued ising and tutte partition functions,” computational complexity, vol. 26, pp. 765–833, 2017.
- T. Hubregtsen, D. Wierichs, E. Gil-Fuster, P.-J. H. Derks, P. K. Faehrmann, and J. J. Meyer, “Training quantum embedding kernels on near-term quantum computers,” Physical Review A, vol. 106, no. 4, p. 042431, 2022.
- G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, “Quantum tomography,” Advances in imaging and electron physics, vol. 128, no. 10.1016, pp. S1076–5670, 2003.
- D. Gosset and J. Smolin, “A compressed classical description of quantum states,” arXiv preprint arXiv:1801.05721, 2018.
- S. Aaronson, “Shadow tomography of quantum states,” in Proceedings of the 50th annual ACM SIGACT symposium on theory of computing, pp. 325–338, 2018.
- N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, “On kernel-target alignment,” Advances in neural information processing systems, vol. 14, 2001.
- “Twonorm dataset.” https://www.cs.toronto.edu/~delve/data/twonorm/desc.html.
- M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3,” Purdue University Research Repository, vol. 10, no. 7, p. 991, 2015.
- L. Slattery, R. Shaydulin, S. Chakrabarti, M. Pistoia, S. Khairy, and S. M. Wild, “Numerical evidence against advantage with quantum fidelity kernels on classical data,” Physical Review A, vol. 107, no. 6, p. 062417, 2023.
- G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Physical review letters, vol. 91, no. 14, p. 147902, 2003.
- Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, “Connecting ansatz expressibility to gradient magnitudes and barren plateaus,” PRX Quantum, vol. 3, no. 1, p. 010313, 2022.
- K. Nakaji and N. Yamamoto, “Expressibility of the alternating layered ansatz for quantum computation,” Quantum, vol. 5, p. 434, 2021.
- S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900070, 2019.
- T. Ali, A. Bhattacharyya, S. S. Haque, E. H. Kim, N. Moynihan, and J. Murugan, “Chaos and complexity in quantum mechanics,” Physical Review D, vol. 101, no. 2, p. 026021, 2020.
- A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, p. 032324, Sept. 2012.
- B. M. Terhal, “Quantum error correction for quantum memories,” Rev. Mod. Phys., vol. 87, pp. 307–346, Apr. 2015.
- M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken, A. Sundaram, and A. Vaschillo, “Assessing requirements to scale to practical quantum advantage,” arXiv preprint arXiv:2211.07629, 2022.
- M. Fellous-Asiani, J. H. Chai, Y. Thonnart, H. K. Ng, R. S. Whitney, and A. Auffèves, “Optimizing Resource Efficiencies for Scalable Full-Stack Quantum Computers,” PRX Quantum, vol. 4, p. 040319, Oct. 2023.
- V. Parma, “Cryostat Design,” in Superconductivity for Accelerators (R. Bailey, ed.), (CERN Yelow Reports: School Proceedings), pp. pp353–399, CERN, Geneva, 2014. arXiv:1501.07154.
- M. J. Martin, C. Hughes, G. Moreno, E. B. Jones, D. Sickinger, S. Narumanchi, and R. Grout, “Energy use in quantum data centers: Scaling the impact of computer architecture, qubit performance, size, and thermal parameters,” IEEE Transactions on Sustainable Computing, vol. 7, no. 4, pp. 864–874, 2022.
- J.-S. Park, S. Subramanian, L. Lampert, T. Mladenov, I. Klotchkov, D. J. Kurian, E. Juarez-Hernandez, B. Perez-Esparza, S. R. Kale, K. T. A. Beevi, S. Premaratne, T. Watson, S. Suzuki, M. Rahman, J. B. Timbadiya, S. Soni, and S. Pellerano, “13.1 A Fully Integrated Cryo-CMOS SoC for Qubit Control in Quantum Computers Capable of State Manipulation, Readout and High-Speed Gate Pulsing of Spin Qubits in Intel 22nm FFL FinFET Technology,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64, pp. 208–210, IEEE, Feb. 2021.
- D. J. Frank, S. Chakraborty, K. Tien, P. Rosno, T. Fox, M. Yeck, J. A. Glick, R. Robertazzi, R. Richetta, J. F. Bulzacchelli, et al., “A cryo-cmos low-power semi-autonomous qubit state controller in 14nm finfet technology,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC), vol. 65, pp. 360–362, IEEE, 2022.
- K. Kang, D. Minn, S. Bae, J. Lee, S. Kang, M. Lee, H.-J. Song, and J.-Y. Sim, “A 40-nm Cryo-CMOS Quantum Controller IC for Superconducting Qubit,” IEEE Journal of Solid-State Circuits, pp. 1–14, Aug. 2022.
- B. Barber, K. M. Barnes, T. Bialas, O. Buğdaycı, E. T. Campbell, N. I. Gillespie, K. Johar, R. Rajan, A. W. Richardson, L. Skoric, et al., “A real-time, scalable, fast and highly resource efficient decoder for a quantum computer,” arXiv preprint arXiv:2309.05558, 2023.
- D. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code quantum computing by lattice surgery,” New Journal of Physics, vol. 14, no. 12, p. 123011, 2012.
- D. Litinski, “A game of surface codes: Large-scale quantum computing with lattice surgery,” Quantum, vol. 3, p. 128, 2019.
- N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algorithm for topological codes,” Quantum, vol. 5, p. 595, 2021.
- A. Miroszewski, “Isoqaetnosiqkm, https://github.com/Quantum-Cosmos-Lab/ISoQAEtNoSiQKM,” 2024.