Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hemispheroidal parameterization and harmonic decomposition of simply connected open surfaces (2407.15417v1)

Published 22 Jul 2024 in cs.CG, cs.GR, cs.NA, and math.NA

Abstract: Spectral analysis of open surfaces is gaining momentum for studying surface morphology in engineering, computer graphics, and medical domains. This analysis is enabled using proper parameterization approaches on the target analysis domain. In this paper, we propose the usage of customizable parameterization coordinates that allow mapping open surfaces into oblate or prolate hemispheroidal surfaces. For this, we proposed the usage of Tutte, conformal, area-preserving, and balanced mappings for parameterizing any given simply connected open surface onto an optimal hemispheroid. The hemispheroidal harmonic bases were introduced to spectrally expand these parametric surfaces by generalizing the known hemispherical ones. This approach uses the radius of the hemispheroid as a degree of freedom to control the size of the parameterization domain of the open surfaces while providing numerically stable basis functions. Several open surfaces have been tested using different mapping combinations. We also propose optimization-based mappings to serve various applications on the reconstruction problem. Altogether, our work provides an effective way to represent and analyze simply connected open surfaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. S. Floater and K. Hormann, “Surface parameterization: a tutorial and survey,” in Advances in Multiresolution for Geometric Modelling, pp. 157–186, Springer, 2005.
  2. A. Sheffer, E. Praun, and K. Rose, “Mesh parameterization methods and their applications,” Foundations and Trends® in Computer Graphics and Vision, vol. 2, no. 2, pp. 105–171, 2007.
  3. G. P. T. Choi and L. M. Lui, “Recent developments of surface parameterization methods using quasi-conformal geometry,” Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, pp. 1–41, 2022.
  4. E. W. Hobson, The theory of spherical and ellipsoidal harmonics. Cambridge University Press, 1931.
  5. New York: Dover, 1959.
  6. L.-W. Li, M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan, “Computations of spheroidal harmonics with complex arguments: A review with an algorithm,” Phys. Rev. E, vol. 58, no. 5, p. 6792, 1998.
  7. Springer, 2006.
  8. G. Dassios, Ellipsoidal harmonics: theory and applications. Cambridge University Press, 2012.
  9. C. Brechbühler, G. Gerig, and O. Kübler, “Parametrization of closed surfaces for 3-D shape description,” Comput. Vis. Image Underst., vol. 61, no. 2, pp. 154–170, 1995.
  10. X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau, “Genus zero surface conformal mapping and its application to brain surface mapping,” IEEE Trans. Med. Imaging, vol. 23, no. 8, pp. 949–958, 2004.
  11. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle, “Conformal surface parameterization for texture mapping,” IEEE Trans. Vis. Comput. Graph., vol. 6, no. 2, pp. 181–189, 2000.
  12. R. Lai, Z. Wen, W. Yin, X. Gu, and L. M. Lui, “Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization,” J. Sci. Comput., vol. 58, no. 3, pp. 705–725, 2014.
  13. P. T. Choi, K. C. Lam, and L. M. Lui, “FLASH: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces,” SIAM J. Imaging Sci., vol. 8, no. 1, pp. 67–94, 2015.
  14. Z. Wang, Z. Luo, J. Zhang, and E. Saucan, “A novel local/global approach to spherical parameterization,” J. Comput. Appl. Math., vol. 329, pp. 294–306, 2018.
  15. M. Shaqfa and W. M. van Rees, “Spheroidal harmonics for generalizing the morphological decomposition of closed parametric surfaces,” 2024.
  16. G. P. T. Choi, “Fast ellipsoidal conformal and quasi-conformal parameterization of genus-0 closed surfaces,” J. Comput. Appl. Math., vol. 447, p. 115888, 2024.
  17. P. T. Choi and L. M. Lui, “Fast disk conformal parameterization of simply-connected open surfaces,” J. Sci. Comput., vol. 65, pp. 1065–1090, 2015.
  18. M.-H. Yueh, W.-W. Lin, C.-T. Wu, and S.-T. Yau, “An efficient energy minimization for conformal parameterizations,” J. Sci. Comput., vol. 73, pp. 203–227, 2017.
  19. G. P.-T. Choi and L. M. Lui, “A linear formulation for disk conformal parameterization of simply-connected open surfaces,” Adv. Comput. Math., vol. 44, pp. 87–114, 2018.
  20. G. P. T. Choi and C. H. Rycroft, “Density-equalizing maps for simply connected open surfaces,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 1134–1178, 2018.
  21. M.-H. Yueh, W.-W. Lin, C.-T. Wu, and S.-T. Yau, “A novel stretch energy minimization algorithm for equiareal parameterizations,” J. Sci. Comput., vol. 78, pp. 1353–1386, 2019.
  22. Z. Lyu, G. P. T. Choi, and L. M. Lui, “Bijective density-equalizing quasiconformal map for multiply connected open surfaces,” SIAM J. Imaging Sci., vol. 17, no. 1, pp. 706––755, 2024.
  23. G. P. T. Choi, B. Chiu, and C. H. Rycroft, “Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map,” IEEE Trans. Biomed. Eng., vol. 67, no. 9, pp. 1507–1517, 2020.
  24. B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal maps for automatic texture atlas generation,” ACM Trans. Graph., vol. 21, no. 3, pp. 1–10, 2002.
  25. P. Mullen, Y. Tong, P. Alliez, and M. Desbrun, “Spectral conformal parameterization,” Comput. Graph. Forum, vol. 27, no. 5, pp. 1487–1494, 2008.
  26. Y.-L. Yang, J. Kim, F. Luo, S.-M. Hu, and X. Gu, “Optimal surface parameterization using inverse curvature map,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 5, pp. 1054–1066, 2008.
  27. M. Shaqfa, G. P. T. Choi, G. Anciaux, and K. Beyer, “Disk harmonics for analysing curved and flat self-affine rough surfaces and the topological reconstruction of open surfaces,” arXiv preprint arXiv.2403.07001, 2024.
  28. A. Giri, G. P. T. Choi, and L. Kumar, “Open and closed anatomical surface description via hemispherical area-preserving map,” Signal Process., vol. 180, p. 107867, 2021.
  29. H. Huang, L. Zhang, D. Samaras, L. Shen, R. Zhang, F. Makedon, and J. Pearlman, “Hemispherical harmonic surface description and applications to medical image analysis,” in Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pp. 381–388, 2006.
  30. M. Shaqfa, G. P. T. Choi, and K. Beyer, “Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches,” Powder Technol., vol. 393, pp. 837–856, 2021.
  31. G. P. T. Choi, A. Giri, and L. Kumar, “Adaptive area-preserving parameterization of open and closed anatomical surfaces,” Comput. Biol. Med., vol. 148, p. 105715, 2022.
  32. P. M. Morse and H. Feshbach, Methods of theoretical physics. McGraw-Hill Book Company, 1953.
  33. G. V. Haines, “Spherical cap harmonic analysis,” J. Geophys. Res. Solid Earth, vol. 90, no. B3, p. 2583–2591, 1985.
  34. W. T. Tutte, “How to draw a graph,” Proc. Lond. Math. Soc., vol. 3, no. 1, pp. 743–767, 1963.
  35. G. P. T. Choi, Y. Leung-Liu, X. Gu, and L. M. Lui, “Parallelizable global conformal parameterization of simply-connected surfaces via partial welding,” SIAM J. Imaging Sci., vol. 13, no. 3, pp. 1049–1083, 2020.
  36. American Mathematical Society, Providence, RI, 2006.
  37. L. M. Lui, K. C. Lam, T. W. Wong, and X. Gu, “Texture map and video compression using Beltrami representation,” SIAM J. Imaging Sci., vol. 6, no. 4, pp. 1880–1902, 2013.
  38. Z. Lyu, L. M. Lui, and G. P. T. Choi, “Spherical density-equalizing map for genus-0 closed surfaces,” arXiv preprint arXiv:2401.11795, 2024.
  39. Textbooks in Mathematics, Boca Raton, FL: CRC Press, 1997.
  40. P. Moon and D. E. Spencer, Field Theory Handbook. Springer Berlin Heidelberg, 1988.
  41. M. Shaqfa, K. R. dos Santos, and K. Beyer, “On the conjugate symmetry and sparsity of the harmonic decomposition of parametric surfaces with the randomised kaczmarz method,” Signal Process., p. 109462, 2024.
  42. X. Zhao, Z. Su, X. D. Gu, A. Kaufman, J. Sun, J. Gao, and F. Luo, “Area-preservation mapping using optimal mass transport,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2838–2847, 2013.
  43. M. Shaqfa and K. Beyer, “Pareto-like sequential sampling heuristic for global optimisation,” Soft Comput., vol. 25, p. 9077–9096, May 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.