Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Survival Forest for Censored Functional Data (2407.15340v1)

Published 22 Jul 2024 in stat.ME and stat.ML

Abstract: This paper introduces a Random Survival Forest (RSF) method for functional data. The focus is specifically on defining a new functional data structure, the Censored Functional Data (CFD), for dealing with temporal observations that are censored due to study limitations or incomplete data collection. This approach allows for precise modelling of functional survival trajectories, leading to improved interpretation and prediction of survival dynamics across different groups. A medical survival study on the benchmark SOFA data set is presented. Results show good performance of the proposed approach, particularly in ranking the importance of predicting variables, as captured through dynamic changes in SOFA scores and patient mortality rates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A. Aguilera and M. Aguilera-Morillo. Penalized PCA approaches for b-spline expansions of smooth functional data. Applied Mathematics and Computation, 219(14):7805–7819, mar 2013. doi: 10.1016/j.amc.2013.02.009. URL https://doi.org/10.1016%2Fj.amc.2013.02.009.
  2. T. Biemann and E. Kearney. Size does matter: How varying group sizes in a sample affect the most common measures of group diversity. Organizational Research Methods, 13(3):582–599, jul 2010. doi: 10.1177/1094428109338875. URL https://doi.org/10.1177%2F1094428109338875.
  3. L. Breiman. Manual on setting up, using, and understanding random forests. (1), 2002.
  4. A. Chao and T.-J. Shen. Nonparametric estimation of shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10(4):429–443, 2003. doi: 10.1023/B:ENVR.0000043140.70017.ac.
  5. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1):45–67, feb 2014. doi: 10.1890/13-0133.1. URL https://doi.org/10.1890%2F13-0133.1.
  6. A. Delaigle and P. Hall. Classification using censored functional data. Journal of the American Statistical Association, 108(504):1269–1283, 2013. doi: 10.1080/01621459.2013.824893. URL https://doi.org/10.1080/01621459.2013.824893.
  7. J. Fan and I. Gijbels. Variable bandwidth and local linear regression smoothers. Annals of Statistics, 20(4):2008–2036, December 1992. doi: 10.1214/aos/1176348900.
  8. M. Febrero-Bande and M. de la Fuente. Statistical computing in functional data analysis: The r package fda.usc. Journal of Statistical Software, Articles, 51(4):1–28, 2012a. doi: 10.18637/jss.v051.i04. URL https://www.jstatsoft.org/v051/i04.
  9. Statistical computing in functional data analysis: The R package fda.usc. Journal of Statistical Software, 2012b. ISSN 15487660. doi: 10.18637/jss.v051.i04.
  10. F. Ferraty. Recent Advances in Functional Data Analysis and Related Topics. Physica-Verlag HD, 2011. doi: 10.1007/978-3-7908-2736-1. URL https://doi.org/10.1007%2F978-3-7908-2736-1.
  11. F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis. Springer New York, 2006. doi: 10.1007/0-387-36620-2. URL https://doi.org/10.1007%2F0-387-36620-2.
  12. Random survival forests. The Annals of Applied Statistics, 2:841–860, 2008.
  13. D. G. Kleinbaum and M. Klein. Survival Analysis: A Self-learning Text. Springer, third edition, 2012. ISBN 978-1441966452.
  14. Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer’s disease progression. Statistical Methods in Medical Research, 30(1):99–111, 2021. doi: 10.1177/0962280220941532. URL https://doi.org/10.1177/0962280220941532.
  15. F. Maturo and R. Verde. Pooling random forest and functional data analysis for biomedical signals supervised classification: Theory and application to electrocardiogram data. Statistics in Medicine, 41(12):2247–2275, 2022. doi: https://doi.org/10.1002/sim.9353. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9353.
  16. F. Maturo and R. Verde. Supervised classification of curves via a combined use of functional data analysis and tree-based methods. Computational Statistics, 38:419–459, 2023. doi: 10.1007/s00180-022-01236-1. URL https://doi.org/10.1007/s00180-022-01236-1.
  17. F. Maturo and R. Verde. Combining unsupervised and supervised learning techniques for enhancing the performance of functional data classifiers. Computational Statistics, 39(1):239–270, 2024. doi: 10.1007/s00180-022-01259-8.
  18. The sequential organ failure assessment (sofa) score: has the time come for an update? Critical Care, 27(1):15, 2023.
  19. J. Ramsay and B. Silverman. Functional Data Analysis, 2nd edn. Springer, New York, 2005.
  20. Introduction to functional data analysis. In Functional Data Analysis with R and MATLAB, pages 1–19. Springer New York, 2009. doi: 10.1007/978-0-387-98185-7\_1. URL https://doi.org/10.1007%2F978-0-387-98185-7_1.
  21. M. G. Schimek, editor. Smoothing and Regression: Approaches, Computation, and Application. John Wiley & Sons, 2013.
  22. Comparison of splitting methods on survival tree. The International Journal of Biostatistics, 11:175 – 188, 2015. URL https://api.semanticscholar.org/CorpusID:11441090.
  23. Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma. Statistical Methods & Applications, 32:271–298, 2023. doi: 10.1007/s10260-022-00647-0. URL https://doi.org/10.1007/s10260-022-00647-0.
  24. E. Strzalkowska-Kominiak and J. Romo. Censored functional data for incomplete follow-up studies. Statistics in Medicine, 40:2821–2838, 2021. doi: 10.1002/sim.8930. URL https://doi.org/10.1002/sim.8930.
  25. H. Wang and G. Li. A selective review on random survival forests for high dimensional data. Quantitative Biology, 36(2):85–96, 2017. doi: 10.22283/qbs.2017.36.2.85.
  26. Machine learning for survival analysis: A survey. ACM Computing Surveys (CSUR), 51(6):1–36, 2019.
  27. Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models. Biostatistics, 16(3):537–549, 02 2015. ISSN 1465-4644. doi: 10.1093/biostatistics/kxv001. URL https://doi.org/10.1093/biostatistics/kxv001.
  28. Functional linear regression analysis for longitudinal data. The Annals of Statistics, pages 287 3–2903, 2005.
  29. Z. Zhang and J. Sun. Interval censoring. Statistical Methods in Medical Research, 19(1):53–70, Feb 2010. doi: 10.1177/0962280209105023. URL https://doi.org/10.1177/0962280209105023.
  30. Survival analysis: log rank test. Dtsch Med Wochenschr, 132(Suppl 1):e39–e41, 2007.

Summary

We haven't generated a summary for this paper yet.