Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis (2407.15321v1)

Published 22 Jul 2024 in eess.IV and cs.CV

Abstract: Hyperspectral image (HI) analysis approaches have recently become increasingly complex and sophisticated. Recently, the combination of spectral-spatial information and superpixel techniques have addressed some hyperspectral data issues, such as the higher spatial variability of spectral signatures and dimensionality of the data. However, most existing superpixel approaches do not account for specific HI characteristics resulting from its high spectral dimension. In this work, we propose a multiscale superpixel method that is computationally efficient for processing hyperspectral data. The Simple Linear Iterative Clustering (SLIC) oversegmentation algorithm, on which the technique is based, has been extended hierarchically. Using a novel robust homogeneity testing, the proposed hierarchical approach leads to superpixels of variable sizes but with higher spectral homogeneity when compared to the classical SLIC segmentation. For validation, the proposed homogeneity-based hierarchical method was applied as a preprocessing step in the spectral unmixing and classification tasks carried out using, respectively, the Multiscale sparse Unmixing Algorithm (MUA) and the CNN-Enhanced Graph Convolutional Network (CEGCN) methods. Simulation results with both synthetic and real data show that the technique is competitive with state-of-the-art solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. Acción, Álvaro, Francisco Argüello, and Dora B Heras. 2020. “Dual-window superpixel data augmentation for hyperspectral image classification.” Applied Sciences 10 (24): 8833.
  2. Achanta, Radhakrishna, A. Shaji, K. Smith, A. Lucchi, P. Fua, and Sabine Süsstrunk. 2012. “SLIC Superpixels Compared to State-of-the-Art Superpixel Methods.” IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (11): 2274–2282. https://doi.org/10.1109/TPAMI.2012.120.
  3. Argüello, Francisco, Dora B Heras, Alberto S Garea, and Pablo Quesada-Barriuso. 2021. “Watershed monitoring in galicia from UAV multispectral imagery using advanced texture methods.” Remote Sensing 13 (14): 2687.
  4. Audebert, Nicolas, Bertrand Le Saux, and Sébastien Lefèvre. 2019. “Deep learning for classification of hyperspectral data: A comparative review.” IEEE geoscience and remote sensing magazine 7 (2): 159–173.
  5. Ayres, L. C., Sergio J.M. De Almeida, Jose C.M. Bermudez, and Ricardo A. Borsoi. 2021. “A Homogeneity-based Multiscale Hyperspectral Image Representation for Sparse Spectral Unmixing.” In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Vol. 2021-June, 1460–1464. Institute of Electrical and Electronics Engineers Inc.
  6. Ayres, Luciano C, Ricardo A Borsoi, José CM Bermudez, and Sérgio JM De Almeida. 2024. “A Generalized Multiscale Bundle-Based Hyperspectral Sparse Unmixing Algorithm.” IEEE Geoscience and Remote Sensing Letters 21.
  7. Beucher, S, and F Meyer. 1993. “The Morphological Approach to Segmentation: The Watershed Transformation.” In Mathematical Morphology in Image Processing, edited by E.R Dougherty, 433–481. CRC Press.
  8. Bioucas-dias, José M, Antonio Plaza, Gustavo Camps-valls, Paul Scheunders, Nasser M Nasrabadi, and Jocelyn Chanussot. 2013. “Hyperspectral Remote Sensing Data Analysis and Future Challenges.” IEEE Geoscience and Remote Sensing Magazine 1 (June): 6–36. https://doi.org/10.1109/MGRS.2013.2244672.
  9. Bioucas-Dias, José M., Antonio Plaza, Nicolas Dobigeon, Mario Parente, Qian Du, Paul Gader, and Jocelyn Chanussot. 2012. “Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (2): 354–379. https://doi.org/10.1109/JSTARS.2012.2194696.
  10. Bischof, Horst, and Ales Leonardis. 1998. “Finding optimal neural networks for land use classification.” IEEE transactions on Geoscience and Remote Sensing 36 (1): 337–341.
  11. Borsoi, Ricardo Augusto, Tales Imbiriba, and Jose Carlos Moreira Bermudez. 2020. “A Data Dependent Multiscale Model for Hyperspectral Unmixing with Spectral Variability.” IEEE Transactions on Image Processing 29: 3638–3651. https://doi.org/10.1109/TIP.2020.2963959.
  12. Borsoi, Ricardo Augusto, Tales Imbiriba, José Carlos Moreira Bermudez, and Cedric Richard. 2019. “A Fast Multiscale Spatial Regularization for Sparse Hyperspectral Unmixing.” IEEE Geoscience and Remote Sensing Letters 16 (4): 598–602. https://doi.org/10.1109/LGRS.2018.2878394.
  13. Borsoi, Ricardo Augusto, Tales Imbiriba, José Carlos Moreira Bermudez, and Cédric Richard. 2020. “A Blind Multiscale Spatial Regularization Framework for Kernel-based Spectral Unmixing.” IEEE Transactions on Image Processing 29: 4965–4979.
  14. Borsoi, Ricardo Augusto, Tales Imbiriba, José Carlos Moreira Bermudez, Cédric Richard, Jocelyn Chanussot, Lucas Drumetz, Jean-Yves Tourneret, Alina Zare, and Christian Jutten. 2021. “Spectral variability in hyperspectral data unmixing: A comprehensive review.” IEEE geoscience and remote sensing magazine 9 (4): 223–270.
  15. Cao, Xianghai, Chenguang Li, Jie Feng, and Licheng Jiao. 2023a. “Semi-supervised feature learning for disjoint hyperspectral imagery classification.” Neurocomputing 526: 9–18.
  16. Cao, Xianghai, Haifeng Lin, Shuaixu Guo, Tao Xiong, and Licheng Jiao. 2023b. “Transformer-based masked autoencoder with contrastive loss for hyperspectral image classification.” IEEE Transactions on Geoscience and Remote Sensing .
  17. Chen, Tao, Yang Liu, Yuxiang Zhang, Bo Du, and Antonio Plaza. 2022. “Superpixel-Based Collaborative and Low-Rank Regularization for Sparse Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing .
  18. Cihan, Mucahit, Murat Ceylan, and Ahmet Haydar Ornek. 2022. “Spectral-spatial classification for non-invasive health status detection of neonates using hyperspectral imaging and deep convolutional neural networks.” Spectroscopy Letters 55 (5): 336–349.
  19. Civco, Daniel L. 1993. “Artificial neural networks for land-cover classification and mapping.” International journal of geographical information science 7 (2): 173–186.
  20. Di, Shuanhu, Miao Liao, Yuqian Zhao, Yang Li, and Yezhan Zeng. 2021. “Image superpixel segmentation based on hierarchical multi-level LI-SLIC.” Optics and Laser Technology 135: 106703. https://doi.org/https://doi.org/10.1016/j.optlastec.2020.106703.
  21. Dieste, Álvaro G, Francisco Argüello, and Dora B Heras. 2023. “ResBaGAN: A Residual Balancing GAN with Data Augmentation for Forest Mapping.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing .
  22. Ding, Yao, Zhili Zhang, Xiaofeng Zhao, Danfeng Hong, Wei Cai, Chengguo Yu, Nengjun Yang, and Weiwei Cai. 2022. “Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification.” Neurocomputing 501: 246–257. https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.031.
  23. Dobigeon, Nicolas, Jean-Yves Tourneret, Cedric Richard, José Carlos Moreira Bermudez, Stephen McLaughlin, and Alfred O. Hero. 2014. “Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms.” IEEE Signal Processing Magazine 31 (1): 82–94. https://doi.org/10.1109/MSP.2013.2279274.
  24. Felzenszwalb, Pedro F, and Daniel P Huttenlocher. 2004. “Efficient Graph-Based Image Segmentation.” International Journal of Computer Vision 59 (2): 167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77.
  25. Halicek, Martin, Himar Fabelo, Samuel Ortega, James V Little, Xu Wang, Amy Y Chen, Gustavo Marrero Callico, Larry L Myers, Baran D Sumer, and Baowei Fei. 2019. “Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth.” In Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, Vol. 10951, 109511A. International Society for Optics and Photonics.
  26. He, Lin, Jun Li, Chenying Liu, and Shutao Li. 2018. “Recent Advances on Spectral–Spatial Hyperspectral Image Classification: An Overview and New Guidelines.” IEEE Transactions on Geoscience and Remote Sensing 56 (3): 1579–1597. https://doi.org/10.1109/TGRS.2017.2765364.
  27. Ince, Taner. 2020. “Superpixel-Based Graph Laplacian Regularization for Sparse Hyperspectral Unmixing.” IEEE Geoscience and Remote Sensing Letters 1–5. https://doi.org/10.1109/lgrs.2020.3027055.
  28. Ince, Taner. 2021. “Double Spatial Graph Laplacian Regularization for Sparse Unmixing.” IEEE Geoscience and Remote Sensing Letters 1–5. https://doi.org/10.1109/LGRS.2021.3065989.
  29. Iordache, Marian-Daniel, J M Bioucas-Dias, and Antonio Plaza. 2011. “Sparse Unmixing of Hyperspectral Data.” IEEE Trans. Geosc. Rem. Sens. 49 (6): 2014–2039. https://doi.org/10.1109/TGRS.2010.2098413.
  30. Iordache, Marian-Daniel, José M. Bioucas-Dias, and Antonio Plaza. 2012. “Total variation spatial regularization for sparse hyperspectral unmixing.” IEEE Transactions on Geoscience and Remote Sensing 50 (11 PART1): 4484–4502. https://doi.org/10.1109/TGRS.2012.2191590.
  31. Iordache, Marian-Daniel, Jose M. Bioucas-Dias, and Antonio Plaza. 2014. “Collaborative Sparse Regression for Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 52 (1): 341–354. https://doi.org/10.1109/TGRS.2013.2240001.
  32. Iordache, Marian-Daniel, Antonio Plaza, and José Bioucas-Dias. 2010. “On the use of spectral libraries to perform sparse unmixing of hyperspectral data.” 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2010 - Workshop Program 1–4. https://doi.org/10.1109/WHISPERS.2010.5594888.
  33. Jampani, Varun, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang, and Jan Kautz. 2018. “Superpixel sampling networks.” In Proceedings of the European Conference on Computer Vision (ECCV), 352–368.
  34. Keshava, Nirmal, and J.F. Mustard. 2002. “Spectral unmixing.” IEEE Signal Processing Magazine 19 (1): 44–57. https://doi.org/10.1109/79.974727.
  35. Kotzagiannidis, Madeleine S., and Carola-Bibiane Schönlieb. 2022. “Semi-Supervised Superpixel-Based Multi-Feature Graph Learning for Hyperspectral Image Data.” IEEE Transactions on Geoscience and Remote Sensing 60: 1–12. https://doi.org/10.1109/TGRS.2021.3112298.
  36. Kumar, Vinod, Ravi Shankar Singh, and Yaman Dua. 2022. “Morphologically dilated convolutional neural network for hyperspectral image classification.” Signal Processing: Image Communication 101: 116549. https://doi.org/https://doi.org/10.1016/j.image.2021.116549.
  37. Landgrebe, David. 2002. “Hyperspectral image data analysis.” IEEE Signal Processing Magazine 19 (1): 17–28. https://doi.org/10.1109/79.974718.
  38. Levinshtein, Alex, Adrian Stere, Kiriakos N. Kutulakos, David J. Fleet, Sven J. Dickinson, and Kaleem Siddiqi. 2009. “TurboPixels: Fast superpixels using geometric flows.” IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (12): 2290–2297. https://doi.org/10.1109/TPAMI.2009.96.
  39. Li, Xueying, Pingping Fan, Zongmin Li, Huimin Qiu, Guangli Hou, Guangyuan Chen, and Guoxing Ren. 2023a. “Hyperspectral images classification of small sample based on the strategy of sample enlargement by superpixel pair method.” International Journal of Remote Sensing 44 (20): 6259–6279.
  40. Li, Zhi, Ruyi Feng, Lizhe Wang, and Tieyong Zeng. 2023b. “Spectral-spatial-sparse unmixing with superpixel-oriented graph Laplacian.” International Journal of Remote Sensing 44 (8): 2573–2589.
  41. Liu, Qichao, Liang Xiao, Jingxiang Yang, and Zhihui Wei. 2021. “CNN-Enhanced Graph Convolutional Network with Pixel- And Superpixel-Level Feature Fusion for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 59 (10): 8657–8671. https://doi.org/10.1109/TGRS.2020.3037361.
  42. Liu, Yuwei, Hongbin Pu, and Da-Wen Sun. 2017. “Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications.” Trends in food science & technology 69: 25–35.
  43. Ma, Wing-Kin, José M Bioucas-Dias, Tsung-Han Chan, Nicolas Gillis, Paul Gader, Antonio J Plaza, ArulMurugan Ambikapathi, and Chong-Yung Chi. 2013. “A signal processing perspective on hyperspectral unmixing: Insights from remote sensing.” IEEE Signal Processing Magazine 31 (1): 67–81.
  44. Machairas, Vaïa, Matthieu Faessel, David Cárdenas-Peña, Théodore Chabardes, Thomas Walter, and Etienne Decenciere. 2015. “Waterpixels.” IEEE Transactions on Image Processing 24 (11): 3707–3716.
  45. MacQueen, James. 1967. “Some methods for classification and analysis of multivariate observations.” Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1 (14): 281–297.
  46. Mei, Xiaoguang, Yong Ma, Chang Li, Fan Fan, Jun Huang, and Jiayi Ma. 2018. “Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation.” Neurocomputing 275: 2783–2797. https://doi.org/10.1016/j.neucom.2017.11.052.
  47. Melgani, Farid, and Lorenzo Bruzzone. 2004. “Classification of hyperspectral remote sensing images with support vector machines.” IEEE Transactions on geoscience and remote sensing 42 (8): 1778–1790.
  48. Mookambiga, A., and V. Gomathi. 2021. “Kernel eigenmaps based multiscale sparse model for hyperspectral image classification.” Signal Processing: Image Communication 99: 116416. https://doi.org/https://doi.org/10.1016/j.image.2021.116416.
  49. Naik, Nitesh, Kandasamy Chandrasekaran, Venkatesan Meenakshi Sundaram, and Prabhavathy Panneer. 2023. “Spatio-temporal analysis of land use/land cover change detection in small regions using self-supervised lightweight deep learning.” Stochastic Environmental Research and Risk Assessment 37 (12): 5029–5049.
  50. Noyel, Guillaume, Jesus Angulo, and Dominique Jeulin. 2020. “Morphological segmentation of hyperspectral images.” arXiv preprint arXiv:2010.00853 .
  51. P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza. 2017. “Advanced Spectral Classifiers for Hyperspectral Images: A review.” IEEE Geoscience and Remote Sensing Magazine 5 (1): 8–32.
  52. Pu, Hongbin, Qingyi Wei, and Da-Wen Sun. 2023. “Recent advances in muscle food safety evaluation: Hyperspectral imaging analyses and applications.” Critical Reviews in Food Science and Nutrition 63 (10): 1297–1313.
  53. Qi, Lin, Jie Li, Xinbo Gao, Ying Wang, Chongyue Zhao, and Yu Zheng. 2019. “A novel joint dictionary framework for sparse hyperspectral unmixing incorporating spectral library.” Neurocomputing 356: 97–106. https://doi.org/https://doi.org/10.1016/j.neucom.2019.04.053.
  54. Qin, Anyong, Zhaowei Shang, Jinyu Tian, Yulong Wang, Taiping Zhang, and Yuan Yan Tang. 2018. “Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification.” IEEE Geoscience and Remote Sensing Letters 16 (2): 241–245.
  55. Saranathan, Arun M., and Mario Parente. 2016. “Uniformity-based superpixel segmentation of hyperspectral images.” IEEE Transactions on Geoscience and Remote Sensing 54 (3): 1419–1430. https://doi.org/10.1109/TGRS.2015.2480863.
  56. Schowengerdt, R.A. 2006. Remote Sensing: Models and Methods for Image Processing. 3rd ed. Elsevier Science.
  57. Sellars, Philip, Angelica I. Aviles-Rivero, and Carola-Bibiane Schönlieb. 2020. “Superpixel Contracted Graph-Based Learning for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 58 (6): 4180–4193. https://doi.org/10.1109/TGRS.2019.2961599.
  58. Shi, Jianbo, and Jitendra Malik. 2000. “Normalized cuts and image segmentation.” IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8): 888–905. https://doi.org/10.1109/34.868688.
  59. Shimoni, Michal, Rob Haelterman, and Christiaan Perneel. 2019. “Hyperspectral imaging for military and security applications: Combining Myriad processing and sensing techniques.” IEEE Geoscience and Remote Sensing Magazine 7 (2): 101–117. https://doi.org/10.1109/MGRS.2019.2902525.
  60. Somers, Ben, MacIel Zortea, Antonio Plaza, and Gregory P. Asner. 2012. “Automated extraction of image-based endmember bundles for improved spectral unmixing.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (2): 396–408. https://doi.org/10.1109/JSTARS.2011.2181340.
  61. Stehman, Stephen V. 1997. “Selecting and interpreting measures of thematic classification accuracy.” Remote Sensing of Environment 62 (1): 77–89.
  62. Stutz, David, Alexander Hermans, and Bastian Leibe. 2018. “Superpixels: An evaluation of the state-of-the-art.” Computer Vision and Image Understanding 166: 1–27. https://doi.org/https://doi.org/10.1016/j.cviu.2017.03.007.
  63. Subudhi, Subhashree, Ram Narayan Patro, Pradyut Kumar Biswal, and Fabio Dell’acqua. 2021. “A Survey on Superpixel Segmentation as a Preprocessing Step in Hyperspectral Image Analysis.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 5015–5035. https://doi.org/10.1109/JSTARS.2021.3076005.
  64. Tao, Chao, Hongbo Pan, Yansheng Li, and Zhengrou Zou. 2015. “Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification.” IEEE Geoscience and remote sensing letters 12 (12): 2438–2442.
  65. Tu, Bing, Jinping Wang, Xudong Kang, Guoyun Zhang, Xianfeng Ou, and Longyuan Guo. 2018. “KNN-based representation of superpixels for hyperspectral image classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (11): 4032–4047.
  66. Van den Bergh, Michael, Xavier Boix, Gemma Roig, Benjamin De Capitani, and Luc Van Gool. 2012. “Seeds: Superpixels extracted via energy-driven sampling.” In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VII 12, 13–26. Springer.
  67. Vasquez, Dionicio, and Jacob Scharcanski. 2018. “An iterative approach for obtaining multi-scale superpixels based on stochastic graph contraction operations.” Expert Systems with Applications 102: 57–69. https://doi.org/10.1016/j.eswa.2018.02.027.
  68. Vedaldi, Andrea, and Stefano Soatto. 2008. “Quick Shift and Kernel Methods for Mode Seeking.” Computer Vision – ECCV 2008 705–718.
  69. Veganzones, Miguel A., Guillaume Tochon, Mauro Dalla-Mura, Antonio J. Plaza, and Jocelyn Chanussot. 2014. “Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation.” IEEE Transactions on Image Processing 23 (8): 3574–3589. https://doi.org/10.1109/TIP.2014.2329767.
  70. Wan, Sheng, Chen Gong, Ping Zhong, Bo Du, Lefei Zhang, and Jian Yang. 2019. “Multiscale dynamic graph convolutional network for hyperspectral image classification.” IEEE Transactions on Geoscience and Remote Sensing 58 (5): 3162–3177.
  71. Wang, Murong, Xiabi Liu, Yixuan Gao, Xiao Ma, and Nouman Q. Soomro. 2017a. “Superpixel segmentation: A benchmark.” Signal Processing: Image Communication 56: 28–39. https://doi.org/https://doi.org/10.1016/j.image.2017.04.007.
  72. Wang, Rui, Heng-Chao Li, Wenzhi Liao, and Aleksandra Pizurica. 2016. “Double reweighted sparse regression for hyperspectral unmixing.” In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), jul, 6986–6989. IEEE.
  73. Wang, Rui, Heng-Chao Li, Aleksandra Pizurica, Jun Li, Antonio Plaza, and William J. Emery. 2017b. “Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation.” IEEE Geoscience and Remote Sensing Letters 14 (7): 1146–1150. https://doi.org/10.1109/LGRS.2017.2700542.
  74. Wang, Xinyu, Yanfei Zhong, Liangpei Zhang, and Yanyan Xu. 2017c. “Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 55 (11): 6287–6304. https://doi.org/10.1109/TGRS.2017.2724944.
  75. Wei, Xing, Qingxiong Yang, Yihong Gong, Narendra Ahuja, and Ming-Hsuan Yang. 2018. “Superpixel Hierarchy.” IEEE Transactions on Image Processing 27 (10): 4838–4849. https://doi.org/10.1109/TIP.2018.2836300.
  76. Yang, Chen, Lorenzo Bruzzone, Haishi Zhao, Yulei Tan, and Renchu Guan. 2018. “Superpixel-based unsupervised band selection for classification of hyperspectral images.” IEEE Transactions on Geoscience and Remote Sensing 56 (12): 7230–7245.
  77. Yao, Jian, Marko Boben, Sanja Fidler, and Raquel Urtasun. 2015. “Real-time coarse-to-fine topologically preserving segmentation.” In Proceedings of the IEEE conference on computer vision and pattern recognition, 2947–2955.
  78. Ye, Chuanlong, Shanwei Liu, Mingming Xu, and Zhiru Yang. 2022. “Combining low-rank constraint for similar superpixels and total variation sparse unmixing for hyperspectral image.” International Journal of Remote Sensing 43 (12): 4331–4351.
  79. Yi, Jiarui, and Miguel Velez-Reyes. 2018. “Low-dimensional enhanced superpixel representation with homogeneity testing for unmixing of hyperspectral imagery.” In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV, Vol. 10644 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, May, 1064422.
  80. Yuan, Ye, Wei Zhang, Hai Yu, and Zhiliang Zhu. 2021. “Superpixels With Content-Adaptive Criteria.” IEEE Transactions on Image Processing 30: 7702–7716.
  81. Zhang, Shaoquan, Jun Li, Heng-Chao Li, Chengzhi Deng, and Antonio Plaza. 2018. “Spectral–Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 56 (6): 3265–3276. https://doi.org/10.1109/TGRS.2018.2797200.
  82. Zhang, Shaoquan, Jun Li, Javier Plaza, Heng-Chao Li, and Antonio Plaza. 2017. “Spatial weighted sparse regression for hyperspectral image unmixing.” In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), jul, 225–228. IEEE.
  83. Zhang, Xinxin, Yuan Yuan, and Xuelong Li. 2022. “Reweighted Low-Rank and Joint-Sparse Unmixing With Library Pruning.” IEEE Transactions on Geoscience and Remote Sensing 60: 1–16.
  84. Zhao, Yang, Yuan Yuan, and Qi Wang. 2019. “Fast Spectral Clustering for Unsupervised Hyperspectral Image Classification.” Remote Sensing 11 (4). https://doi.org/10.3390/rs11040399.
  85. Zheng, Cheng Yong, Hong Li, Qiong Wang, and C.L. Philip Chen. 2016. “Reweighted Sparse Regression for Hyperspectral Unmixing.” IEEE Transactions on Geoscience and Remote Sensing 54 (1): 479–488. https://doi.org/10.1109/TGRS.2015.2459763.
  86. Zou, Jinlin, and Jinhui Lan. 2019. “A multiscale hierarchical model for sparse Hyperspectral unmixing.” Remote Sensing 11 (5). https://doi.org/10.3390/rs11050500.

Summary

We haven't generated a summary for this paper yet.