Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset (2407.14945v1)

Published 20 Jul 2024 in cs.NI and cs.CR

Abstract: Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems. It is not surprising that this technology is now being applied to secure Internet of Things (IoT) networks against cyber threats. However, the limited computational resources available on IoT devices pose a challenge for deploying conventional computing-based IDSs. IDSs designed for IoT environments must demonstrate high classification performance, and utilize low-complexity models. Developing intrusion detection models in the field of IoT has seen significant advancements. However, achieving a balance between high classification performance and reduced complexity remains a challenging endeavor. In this research, we present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM). Additionally, we employ feature selection techniques to minimize the number of features inputted into the model, thereby reducing its complexity. This approach renders the proposed model highly suitable for resource-constrained IoT devices, ensuring it meets their computation capability requirements. Creating a model that meets the demands of IoT devices and attains enhanced precision is a challenging task. However, our suggested model outperforms previous works in the literature by attaining a remarkable accuracy rate of 97.90% within a prediction time of 1.1 seconds for binary classification. Furthermore, it achieves an accuracy rate of 97.09% within a prediction time of 2.10 seconds for multiclassification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.