Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convex-Nonconvex Framework for Enhancing Minimization Induced Penalties (2407.14819v3)

Published 20 Jul 2024 in math.OC and eess.SP

Abstract: This paper presents a novel framework for nonconvex enhancement of minimization induced (MI) penalties while preserving the overall convexity of associated regularization models. MI penalties enable the adaptation to certain signal structures via minimization, but often underestimate significant components owing to convexity. To overcome this shortcoming, we design a generalized Moreau enhanced minimization induced (GME-MI) penalty by subtracting from the MI penalty its generalized Moreau envelope. While the proposed GME-MI penalty is nonconvex in general, we derive an overall convexity condition for the GME-MI regularized least-squares model. Moreover, we present a proximal splitting algorithm with guaranteed convergence to a globally optimal solution of the GME-MI model under the overall convexity condition. Numerical examples illustrate the effectiveness of the proposed framework.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com