2000 character limit reached
Petersson Inner Products and Whittaker--Fourier Periods on Even Special Orthogonal and Symplectic Groups (2407.13599v1)
Published 18 Jul 2024 in math.NT and math.RT
Abstract: In this article, we would like to formulate a relation between the square norm of Whittaker--Fourier coefficients on even special orthogonal and symplectic groups and Petersson inner products along with the critical value of $L$-functions up to constants. We follow the path of Lapid and Mao to reduce it to the conjectural local identity. Our strategy is based on the work of Ginzburg--Rallis--Soudry on automorphic descent. We present the analogue result for odd special orthogonal groups, which is conditional on unfolding Whittaker functions of descents.