Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discussion: Effective and Interpretable Outcome Prediction by Training Sparse Mixtures of Linear Experts (2407.13526v1)

Published 18 Jul 2024 in cs.LG

Abstract: Process Outcome Prediction entails predicting a discrete property of an unfinished process instance from its partial trace. High-capacity outcome predictors discovered with ensemble and deep learning methods have been shown to achieve top accuracy performances, but they suffer from a lack of transparency. Aligning with recent efforts to learn inherently interpretable outcome predictors, we propose to train a sparse Mixture-of-Experts where both the gate'' andexpert'' sub-nets are Logistic Regressors. This ensemble-like model is trained end-to-end while automatically selecting a subset of input features in each sub-net, as an alternative to the common approach of performing a global feature selection step prior to model training. Test results on benchmark logs confirmed the validity and efficacy of this approach.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets