Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple matrix models for the flag, Grassmann, and Stiefel manifolds (2407.13482v1)

Published 18 Jul 2024 in math.NA, cs.NA, and math.DG

Abstract: We derive three families of orthogonally-equivariant matrix submanifold models for the Grassmann, flag, and Stiefel manifolds respectively. These families are exhaustive -- every orthogonally-equivariant submanifold model of the lowest dimension for any of these manifolds is necessarily a member of the respective family, with a small number of exceptions. They have several computationally desirable features. The orthogonal equivariance allows one to obtain, for various differential geometric objects and operations, closed-form analytic expressions that are readily computable with standard numerical linear algebra. The minimal dimension aspect translates directly to a speed advantage in computations. And having an exhaustive list of all possible matrix models permits one to identify the model with the lowest matrix condition number, which translates to an accuracy advantage in computations. As an interesting aside, we will see that the family of models for the Stiefel manifold is naturally parameterized by the Cartan manifold, i.e., the positive definite cone equipped with its natural Riemannian metric.

Citations (2)

Summary

We haven't generated a summary for this paper yet.