CiteFusion: An Ensemble Framework for Citation Intent Classification Harnessing Dual-Model Binary Couples and SHAP Analyses (2407.13329v3)
Abstract: Understanding the motivations underlying scholarly citations is essential to evaluate research impact and pro-mote transparent scholarly communication. This study introduces CiteFusion, an ensemble framework designed to address the multi-class Citation Intent Classification task on two benchmark datasets: SciCite and ACL-ARC. The framework employs a one-vs-all decomposition of the multi-class task into class-specific binary sub-tasks, leveraging complementary pairs of SciBERT and XLNet models, independently tuned, for each citation intent. The outputs of these base models are aggregated through a feedforward neural network meta-classifier to reconstruct the original classification task. To enhance interpretability, SHAP (SHapley Additive exPlanations) is employed to analyze token-level contributions, and interactions among base models, providing transparency into the classification dynamics of CiteFusion, and insights about the kind of misclassifications of the ensem-ble. In addition, this work investigates the semantic role of structural context by incorporating section titles, as framing devices, into input sentences, assessing their positive impact on classification accuracy. CiteFusion ul-timately demonstrates robust performance in imbalanced and data-scarce scenarios: experimental results show that CiteFusion achieves state-of-the-art performance, with Macro-F1 scores of 89.60% on SciCite, and 76.24% on ACL-ARC. Furthermore, to ensure interoperability and reusability, citation intents from both datasets sche-mas are mapped to Citation Typing Ontology (CiTO) object properties, highlighting some overlaps. Finally, we describe and release a web-based application that classifies citation intents leveraging the CiteFusion models developed on SciCite.