Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relaxation time and topology in 1D $O(N)$ models (2407.12610v1)

Published 17 Jul 2024 in math.PR, math-ph, and math.MP

Abstract: We discuss the relaxation time (inverse spectral gap) of the one dimensional $O(N)$ model, for all $N$ and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the space dimension, which here is always 1, the boundary condition (free or periodic), and the spin state $S{N-1}$, determines the existence or absence of non-trivial homotopy classes in some discrete version. Such non-trivial topology reflects in bottlenecks of the dynamics, creating metastable states that the system exits at exponential times; while when only one homotopy class exists the relaxation time depends polynomially on the temperature. We prove in the one dimensional case that, indeed, the relaxation time is a proxy to the model's topological properties via the exponential/polynomial dependence on the temperature.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com