Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification and reconstruction for single-pixel imaging with classical and quantum neural networks (2407.12506v2)

Published 17 Jul 2024 in quant-ph and physics.optics

Abstract: Single-pixel cameras are effective solution for imaging outside the visible spectrum where traditional CMOS/CCD cameras have challenges. Combined with machine learning, they can analyze images quickly enough for practical applications. Solving the problem of high-dimensional single-pixel visualization can potentially be accelerated using quantum machine learning, thereby expanding the range of practical problems. In this work we simulated a single-pixel imaging experiment using Hadamard basis patterns, where images from the MNIST handwritten digit dataset were used as objects. There were selected 64 measurements with maximum variance (6% of the number of pixels in the image). We created algorithms for classifying and reconstruction images based on these measurements using classical fully connected neural networks and parameterized quantum circuits. Classical and quantum classifiers showed accuracies of 96% and 95% respectively after 6 training epochs, which is quite competitive result. Image reconstruction was also demonstrated using classical and quantum neural networks after 10 training epochs, the structural similarity index measure values were 0.76 and 0.25, respectively, which indicates that the problem in such a formulation turned out to be too difficult for quantum neural networks in such a configuration for now.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com