Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compound Expression Recognition via Multi Model Ensemble for the ABAW7 Challenge (2407.12257v2)

Published 17 Jul 2024 in cs.CV

Abstract: Compound Expression Recognition (CER) is vital for effective interpersonal interactions. Human emotional expressions are inherently complex due to the presence of compound expressions, requiring the consideration of both local and global facial cues for accurate judgment. In this paper, we propose an ensemble learning-based solution to address this complexity. Our approach involves training three distinct expression classification models using convolutional networks, Vision Transformers, and multiscale local attention networks. By employing late fusion for model ensemble, we combine the outputs of these models to predict the final results. Our method demonstrates high accuracy on the RAF-DB datasets and is capable of recognizing expressions in certain portions of the C-EXPR-DB through zero-shot learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.