Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multigrid Monte Carlo Revisited: Theory and Bayesian Inference (2407.12149v2)

Published 16 Jul 2024 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Gaussian random fields play an important role in many areas of science and engineering. In practice, they are often simulated by sampling from a high-dimensional multivariate normal distribution, which arises from the discretisation of a suitable precision operator. Existing methods such as Cholesky factorization and Gibbs sampling become prohibitively expensive on fine meshes due to their high computational cost. In this work, we revisit the Multigrid Monte Carlo (MGMC) algorithm developed by Goodman & Sokal (Physical Review D 40.6, 1989) in the quantum physics context. To show that MGMC can overcome these issues, we establish a grid-size-independent convergence theory based on the link between linear solvers and samplers for multivariate normal distributions, drawing on standard multigrid convergence theory. We then apply this theory to linear Bayesian inverse problems. This application is achieved by extending the standard multigrid theory to operators with a low-rank perturbation. Moreover, we develop a novel bespoke random smoother which takes care of the low-rank updates that arise in constructing posterior moments. In particular, we prove that Multigrid Monte Carlo is algorithmically optimal in the limit of the grid-size going to zero. Numerical results support our theory, demonstrating that Multigrid Monte Carlo can be significantly more efficient than alternative methods when applied in a Bayesian setting.

Summary

We haven't generated a summary for this paper yet.