Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Hybrid Integrated Pix2Pix and WGAN Model with Gradient Penalty for Binary Images Denoising (2407.11865v2)

Published 16 Jul 2024 in eess.IV and cs.CV

Abstract: This paper introduces a novel approach to image denoising that leverages the advantages of Generative Adversarial Networks (GANs). Specifically, we propose a model that combines elements of the Pix2Pix model and the Wasserstein GAN (WGAN) with Gradient Penalty (WGAN-GP). This hybrid framework seeks to capitalize on the denoising capabilities of conditional GANs, as demonstrated in the Pix2Pix model, while mitigating the need for an exhaustive search for optimal hyperparameters that could potentially ruin the stability of the learning process. In the proposed method, the GAN's generator is employed to produce denoised images, harnessing the power of a conditional GAN for noise reduction. Simultaneously, the implementation of the Lipschitz continuity constraint during updates, as featured in WGAN-GP, aids in reducing susceptibility to mode collapse. This innovative design allows the proposed model to benefit from the strong points of both Pix2Pix and WGAN-GP, generating superior denoising results while ensuring training stability. Drawing on previous work on image-to-image translation and GAN stabilization techniques, the proposed research highlights the potential of GANs as a general-purpose solution for denoising. The paper details the development and testing of this model, showcasing its effectiveness through numerical experiments. The dataset was created by adding synthetic noise to clean images. Numerical results based on real-world dataset validation underscore the efficacy of this approach in image-denoising tasks, exhibiting significant enhancements over traditional techniques. Notably, the proposed model demonstrates strong generalization capabilities, performing effectively even when trained with synthetic noise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com