Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Chaos, Randomness and Universal Scaling of Entanglement in Various Krylov Spaces (2407.11822v1)

Published 16 Jul 2024 in quant-ph and cond-mat.stat-mech

Abstract: Using a random matrix approach, combined with the ergodicity hypothesis, we derive an analytical expression for the time-averaged quantum Fisher information (QFI) that applies to all quantum chaotic systems governed by Dyson's ensembles. Our approach integrates concepts of randomness, multipartite entanglement and quantum chaos. Furthermore, the QFI proves to be highly dependent on the dimension of the Krylov space confining the chaotic dynamics: it ranges from $N2/3$ for $N$ qubits in the permutation-symmetric subspace (e.g. for chaotic kicked top models with long-range interactions), to $N$ when the dynamics extend over the full Hilbert space with or without bit reversal symmetry or parity symmetry (e.g. in chaotic models with short-range Ising-like interactions). In the former case, the QFI reveals multipartite entanglement among $N/3$ qubits. Interestingly this result can be related to isotropic substructures in the Wigner distribution of chaotic states and demonstrates the efficacy of quantum chaos for Heisenberg-scaling quantum metrology. Finally, our general expression for the QFI agrees with that obtained for random states and, differently from out-of-time-order-correlators, it can also distinguish chaotic from integrable unstable spin dynamics.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com