Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning feasible transitions for efficient contact planning (2407.11788v2)

Published 16 Jul 2024 in cs.RO

Abstract: In this paper, we propose an efficient contact planner for quadrupedal robots to navigate in extremely constrained environments such as stepping stones. The main difficulty in this setting stems from the mixed nature of the problem, namely discrete search over the steppable patches and continuous trajectory optimization. To speed up the discrete search, we study the properties of the transitions from one contact mode to another. In particular, we propose to learn a dynamic feasibility classifier and a target adjustment network. The former predicts if a contact transition between two contact modes is dynamically feasible. The latter is trained to compensate for misalignment in reaching a desired set of contact locations, due to imperfections of the low-level control. We integrate these learned networks in a Monte Carlo Tree Search (MCTS) contact planner. Our simulation results demonstrate that training these networks with offline data significantly speeds up the online search process and improves its accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com