Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Fermionic backflow states via a systematically improvable tensor decomposition (2407.11779v2)

Published 16 Jul 2024 in quant-ph, cond-mat.str-el, and physics.chem-ph

Abstract: We present an effective ansatz for the wave function of correlated electrons that brings closer the fields of machine learning parameterizations and tensor rank decompositions. We consider a CANDECOMP/PARAFAC (CP) tensor factorization of a general backflow transformation in second quantization for a simple, compact and systematically improvable Fermionic state. This directly encodes $N$-body correlations without the ordering dependence of other tensor decompositions. We consider and explicitly demonstrate various controllable truncations, in the rank and range of the backflow correlations or magnitude of local energy contributions, in order to systematically affect scaling reductions to $\mathcal{O}[N{3-4}]$. Benchmarking against small Fermi-Hubbard and chemical systems reveals an improvement over other NQS-like models, while extending towards larger strongly correlated ab initio systems demonstrates competitive accuracy with more established DMRG techniques on ab initio 2D hydrogenic lattices with realistic long-range Coulomb interactions.

Summary

We haven't generated a summary for this paper yet.